当前位置:   article > 正文

Gmapping学习总结_fast slam与gmapping

fast slam与gmapping

Gmapping学习总结

Gmapping的程序框架是依托Open_slam,该框架主要分成slam_gmapping和openslam_gmapping。在slam_gmapping可以从lasercallback出发,作为整个框架的起点(虽然有main函数,main函数在main.cpp中,从这里出发不影响这个流程的分析)。Lasercallback函数在slam_gmapping.cpp文件中。
InitMapper函数:如果是首次调用lasercallback函数,则进入InitMapper,该函数在同样的.cpp文件中。激光雷达测得数据数据,是在激光雷达为坐标系的数据。在InitMapper设置一个比激光雷达Z轴上高一个单位的一个点,用这个点来判断激光雷达是否发生了倾斜。接下来就是根据激光雷达的安装位置(正反安放)。初始化并设置一些参数。
addScan函数:成功将测量值加入之后,在Lasercallback下面就是两个坐标系的变换。在addscan函数是主要函数的。在该函数了成功获取到里程计位姿后,根据激光雷达的安装方式,对角度进行修改。然后将ROS的激光雷达采集的信息转换成gmapping能看懂的格式。设置和激光数据时间戳匹配的机器人的位姿。调用processscan函数。
Processscan函数:processscan函数在gridslamprocessor.cpp中,首先获取当前的位姿,然后在从里程计运动模型获取位姿,这里调用了drawFromMotion函数,这个函数在motionmodel.cpp中,drawFromMotion函数中的sample函数是形参作为方差,均值为0的高斯分布。sample函数是数值分析所近似生成的高斯分布,具体的函数实现在stat

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop】
推荐阅读
相关标签
  

闽ICP备14008679号