赞
踩
三维重建的 SfM (Structure from Motion) 算法是通过多张二维图片来重建三维场景的算法。
以下是使用 Golang 实现 SfM 的基本步骤:
import (
"gocv.io/x/gocv"
)
func extractFeatures(img gocv.Mat) gocv.KeyPoints {
sift := gocv.NewSIFT()
defer sift.Close()
mask := gocv.NewMat()
defer mask.Close()
descriptors := gocv.NewMat()
defer descriptors.Close()
keypoints := sift.Detect(img, mask)
descriptors = sift.Compute(img, keypoints)
return keypoints
}
import (
"gocv.io/x/gocv"
)
func matchFeatures(des1, des2 gocv.Mat) []gocv.DMatch {
matcher := gocv.NewFlannBasedMatcher()
defer matcher.Close()
matches := matcher.KnnMatch(des1, des2, 2)
var goodMatches []gocv.DMatch
for i, match := range matches {
if len(match) < 2 {
continue
}
if match[0].Distance < 0.7*match[1].Distance {
goodMatches = append(goodMatches, matches[i][0])
}
}
return goodMatches
}
import (
"gocv.io/x/gocv"
)
func estimatePose(keypoints1, keypoints2 []gocv.KeyPoint, matches []gocv.DMatch, cameraMatrix gocv.Mat) (gocv.Mat, gocv.Mat) {
points1 := make([]gocv.Point2f, len(matches))
points2 := make([]gocv.Point3f, len(matches))
for i, match := range matches {
points1[i] = keypoints1[match.QueryIdx].Pt
points2[i] = gocv.Point3f{
X: float32(keypoints2[match.TrainIdx].Pt.X),
Y: float32(keypoints2[match.TrainIdx].Pt.Y),
Z: 0.0,
}
}
rvec := gocv.NewMat()
defer rvec.Close()
tvec := gocv.NewMat()
defer tvec.Close()
inliers := make([]byte, len(matches))
gocv.SolvePnPRansac(points2, points1, cameraMatrix, gocv.NewMat(), &rvec, &tvec, false, 100, 8.0, 0.99, gocv.NewMatVector(), gocv.SolvePnpIterCount, 2000, &inliers)
return rvec, tvec
}
import (
"gocv.io/x/gocv"
)
func triangulatePoints(points1, points2 []gocv.Point2f, cameraMatrix1, cameraMatrix2, distCoeffs1, distCoeffs2 gocv.Mat, rvec1, tvec1, rvec2, tvec2 gocv.Mat) gocv.Mat {
projectionMatrix1 := gocv.NewMat()
defer projectionMatrix1.Close()
gocv.ComposeRT(rvec1, tvec1, &projectionMatrix1)
projectionMatrix1.Multiply(cameraMatrix1, &projectionMatrix1)
projectionMatrix2 := gocv.NewMat()
defer projectionMatrix2.Close()
gocv.ComposeRT(rvec2, tvec2, &projectionMatrix2)
projectionMatrix2.Multiply(cameraMatrix2, &projectionMatrix2)
points4D := gocv.NewMat()
defer points4D.Close()
gocv.TriangulatePoints(projectionMatrix1, projectionMatrix2, points1, points2, &points4D)
points3D := gocv.NewMat()
defer points3D.Close()
gocv.ConvertPointsFromHomogeneous(points4D.T(), &points3D)
return points3D
}
import (
"github.com/strawberryfg/pcl"
)
func reconstructPointCloud(points3D []gocv.Point3f) *pcl.PointCloud {
cloud := pcl.NewPointCloud()
defer cloud.Close()
for _, point := range points3D {
pclPoint := pcl.NewPointXYZRGB(point.X, point.Y, point.Z, 255, 255, 255)
cloud.PushBack(pclPoint)
}
return cloud
}
以上这些代码片段可以组合成一个 SfM 算法的基本实现。当然,这只是一个简单的示例,实际应用中可能需要更多的步骤和复杂的实现。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。