赞
踩
需要源码和数据集请点赞关注收藏后评论区留言私信~~~
K-Mean算法,即 K 均值算法,是一种常见的聚类算法。算法会将数据集分为 K 个簇,每个簇使用簇内所有样本均值来表示,将该均值称为“质心”。
K-Means
容易受初始质心的影响;算法简单,容易实现;算法聚类时,容易产生空簇;算法可能收敛到局部最小值。
通过聚类可以实现:发现不同用户群体,从而可以实现精准营销;对文档进行划分;社交网络中,通过圈子,判断哪些人可能互相认识;处理异常数据。
距离计算方式是 欧式距离。
- 1.从样本中选择 K 个点作为初始质心(完全随机)
- 2.计算每个样本到各个质心的距离,将样本划分到距离最近的质心所对应的簇中
- 3.计算每个簇内所有样本的均值,并使用该均值更新簇的质心
- 4.重复步骤 2 与 3 ,直到达到以下条件之一:
- 质心的位置变化小于指定的阈值(默认为 0.0001)
- 达到最大迭代次数
K-Means++
K-Means++,算法受初始质心影响较小;表现上,往往优于 K-Means 算法;与 K-Means算法不同仅在于初始质心的选择方式不同
- 在选择初始质心上,进行优化:
-
- 1.从样本中选择 1 个点作为初始质心(完全随机)
- 2.对于任意一个非质心样本 x,计算x与现有最近质心距离 D(x)
- 3.基于距离计算概率,来选择下一个质心 x,选择距离当前质心远的点作为质心
- 4.重复步骤 2 与 3 ,直到选择 k 个质心为止。
Mini Batch K-Means
与 K-Means 算法相比,大大减少计算时间
- 在K-Means算法上发展而来
-
- 1.从数据集中随机选择部分数据,使用 K-Means 算法在这部分随机数据上聚类,获取质心
- 2.从数据集中随机选择部分数据,形成一个批次,将该批次数据分配给最近的质心
- 3.根据现有的数据集(当前批次数据 + 所有以前的数据)更新质心
- 4.重复步骤 2 与 3 ,直到质心变化小于指定的阀值或者达到最大迭代次数为止
人脸数据集LFW(Labeled Faces in the Wild)是一个带标签的人物脸部图片数据集
打印数据中人物标记、人物名、数据形状、标记形状等信息如下
打印部分人脸图片如下
统计每个标记数量如下
对一张照片进行kmeans聚类结果如下 可见把图像聚成两类
部分代码如下
- # -*- coding: utf-8 -*-
- from PIL import Image
- import numpy as np
- from sklearn.cluster import KMeans
- import matplotlib
- import matplotlib.pyplot as plt
-
- def restore_image(cb, cluster, shape):
- row, col, dummy = shape
- image = np.empty((row, col, dummy))
- for r in range(row):
- for c in range(col):
- image[r, c] = cb[cluster[r * col + c]]
- return image
-
- if __name__ ==.rcParams['font.sans-serif'] = [u'SimHei']
- matplotlib.rcParams['axes.unicode_minus'] = False
- # 聚类数2,6,30
- num_vq = 2
- im = Image.open('Tiger_Woods_0023.jpg')
- image = np.array(im).astype(np.float) / 255
- image = image[:, :, :3]
- image_v = image.reshape((-1, 3))
- kmeans = KMeans(n_clusters=num_vq, init='k-means++')
-
- N = image_v.shape[0] # 图像像素总数
- # 选择样本,计算聚类中心
- idx = np.random.randint(0, N, size=int(N * 0.7))
- image_sample = image_v[idx]
- kmeans.fit(image_sample)
- result = kmeans.predict(image_v) # 聚类结果
- print('聚类结果:\n', result)
- print('聚类中心:\n', kmeans.cluster_centers_)
- ns.cluster_centers_, result, image.shape)
- plt.axis('off')
- plt.title(u'聚类个数:%d' % num_vq, fontsize=20)
- plt.imshow(vq_image)
- # 可以使用plt.savefig('矢量化图片.png'),保存处理后的图片并对比
-
- plt.tight_layout(1.2)
- plt.show()
- import matplotlib
- import matplotlib.pyplot as plt
-
- image_shape = people.images[0].shape
- print(image_shape)
- print("Number of classes:",len(people.target_names))
- print("shape of targetss:",people.target.shape)
-
- fig, axes = plt.subplots(2, 5, figsize=(15, 8))
- for target, image, ax in zip(people.target, people.images, axes.ravel()):
- ax.imshow(image)
- ax.set_title(people.target_names[target])
创作不易 觉得有帮助请点赞关注收藏~~~
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。