赞
踩
参考论文:
title: Incorporating language structures into pre-training for deep language understanding
author:Wang, Wei and Bi, Bin and Yan, Ming and Wu, Chen and Bao, Zuyi and Xia, Jiangnan and Peng, Liwei and Si, Luo
journal:arXiv preprint arXiv:1908.04577,
year:2019
版本依赖:
modelscope-lib 最新版本
推理代码:
- semantic_cls = pipeline(Tasks.text_classification, 'damo/nlp_structbert_sentiment-classification_chinese-base')
-
- comment0 = '非常厚实的一包大米,来自遥远的东北,盘锦大米,应该不错的,密封性很好。卖家的服务真是贴心周到!他们提供了专业的建议,帮助我选择了合适的商品。物流速度也很快,让我顺利收到了商品。'
- result0 = semantic_cls(input=comment0)
- if result0['scores'][0] > result0['scores'][1]:
- print("'" + comment0 + "',属于" + result0["labels"][0] + "评价")
- else:
- print("'" + comment0 + "',属于" + result0["labels"][1] + "评价")
-
- comment1 = '食物的口感还不错,不过店员的服务态度可以进一步改善一下。'
- result1 = semantic_cls(input=comment1)
- if result1['scores'][0] > result1['scores'][1]:
- print("'" + comment1 + "',属于" + result1["labels"][0] + "评价")
- else:
- print("'" + comment1 + "',属于" + result1["labels"][1] + "评价")
-
- comment2 = '衣服尺码合适,色彩可以再鲜艳一些,客服响应速度一般。'
- result2 = semantic_cls(input=comment2)
- if result2['scores'][0] > result2['scores'][1]:
- print("'" + comment2 + "',属于" + result2["labels"][0] + "评价")
- else:
- print("'" + comment2 + "',属于" + result2["labels"][1] + "评价")
-
- comment3 = '物流慢,售后不好,货品质量差。'
- result3 = semantic_cls(input=comment3)
- if result3['scores'][0] > result3['scores'][1]:
- print("'" + comment3 + "',属于" + result3["labels"][0] + "评价")
- else:
- print("'" + comment3 + "',属于" + result3["labels"][1] + "评价")
-
- comment4 = '物流包装顺坏,不过客服处理速度比较快,也给了比较满意的赔偿。'
- result4 = semantic_cls(input=comment4)
- if result4['scores'][0] > result4['scores'][1]:
- print("'" + comment4 + "',属于" + result4["labels"][0] + "评价")
- else:
- print("'" + comment4 + "',属于" + result4["labels"][1] + "评价")
-
- comment5 = '冰箱制冷噪声较大,制冷慢。'
- result5 = semantic_cls(input=comment5)
- if result5['scores'][0] > result5['scores'][1]:
- print("'" + comment5 + "',属于" + result5["labels"][0] + "评价")
- else:
- print("'" + comment5 + "',属于" + result5["labels"][1] + "评价")
-
- comment6 = '买了一件刘德华同款鞋,穿在自己脚上不像刘德华,像扫大街的。'
- result6 = semantic_cls(input=comment6)
- if result6['scores'][0] > result6['scores'][1]:
- print("'" + comment6 + "',属于" + result6["labels"][0] + "评价")
- else:
- print("'" + comment6 + "',属于" + result6["labels"][1] + "评价")
-
-
运行结果:
'非常厚实的一包大米,来自遥远的东北,盘锦大米,应该不错的,密封性很好。卖家的服务真是贴心周到!他们提供了专业的建议,帮助我选择了合适的商品。物流速度也很快,让我顺利收到了商品。',属于正面评价
'食物的口感还不错,不过店员的服务态度可以进一步改善一下。',属于正面评价
'衣服尺码合适,色彩可以再鲜艳一些,客服响应速度一般。',属于正面评价
'物流慢,售后不好,货品质量差。',属于负面评价
'物流包装顺坏,不过客服处理速度比较快,也给了比较满意的赔偿。',属于正面评价
'冰箱制冷噪声较大,制冷慢。',属于负面评价
'买了一件刘德华同款鞋,穿在自己脚上不像刘德华,像扫大街的。',属于负面评价
参考论文:
title: Self-Supervised Pre-Training for Speech Emotion Representation
author:Ma, Ziyang and Zheng, Zhisheng and Ye, Jiaxin and Li, Jinchao and Gao, Zhifu and Zhang, Shiliang and Chen, Xie
journal:arXiv preprint arXiv:2312.15185
year:2023
开源地址:
版本依赖:
modelscope >= 1.11.1
funasr>=1.0.5
推理代码:
- from funasr import AutoModel
-
- model = AutoModel(model="iic/emotion2vec_base_finetuned", model_revision="v2.0.4")
-
- wav_file = f"{model.model_path}/example/test.wav"
- res = model.generate(wav_file, output_dir="./outputs", granularity="utterance", extract_embedding=False)
- print(res)
-
- scores = res[0]["scores"]
-
- max_score = 0
- max_index = 0
- i = 0
- for score in scores:
- if score > max_score:
- max_score = score
- max_index = i
- i += 1
-
-
- print("音频分析后,情感基调为:" + res[0]["labels"][max_index])
-
-
-
运行结果
rtf_avg: 0.263: 100%|██████████| 1/1 [00:02<00:00, 2.64s/it]
[{'key': 'rand_key_2yW4Acq9GFz6Y', 'labels': ['生气/angry', '厌恶/disgusted', '恐惧/fearful', '开心/happy', '中立/neutral', '其他/other', '难过/sad', '吃惊/surprised', '<unk>'], 'scores': [0.06824027001857758, 0.030794354155659676, 0.20301730930805206, 0.09666425734758377, 0.12219445407390594, 0.06753909587860107, 0.13648174703121185, 0.11873088777065277, 0.1563376784324646]}]
音频分析后,情感为:恐惧/fearfulProcess finished with exit code 0
对于行业内的预训练模型,使用模型能力进行预处理,同时结合产品规则进行精细化筛选,基本能满足中小团队的需求;如果该预训练模型能使用 CPU 完成推理,那成本就更加容易控制了;可以开发相应的服务接口提供给业务系统使用;
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。