赞
踩
公式:
f ( x ) = 1 1 + e − x f(x) = \frac{1}{1 + e^{-x}} f(x)=1+e−x1
图像:
公式:
f ( x ) = e x − e − x e x + e − x f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} f(x)=ex+e−xex−e−x
图像:
公式:
f ( x ) = l o g ( 1 + e x ) f(x) = log(1+e^x) f(x)=log(1+ex)
图像:
公式:
f
(
x
)
=
{
0
,
x
≤
0
x
,
x
>
0
f(x) =
图像:
公式:
f
(
x
)
=
{
α
x
,
x
≤
0
x
,
x
>
0
f(x) =
Relu
为0的情况,通常
α
\alpha
α设定为0.01公式:
f
(
x
)
=
{
0
,
x
≤
0
x
,
0
≤
x
≤
n
n
,
x
>
n
f(x) =
n
设置为6, 此时的ReLU6
的图像如下图所示:公式:
f
(
x
)
=
{
α
(
e
x
−
1
)
,
x
≤
0
x
,
x
>
0
f(x) =
图像:
公式:
f
(
x
)
=
λ
{
α
(
e
x
−
1
)
,
x
≤
0
x
,
x
>
0
=
λ
∗
E
L
U
(
x
)
f(x) = \lambda
图像:
公式:
f ( x ) = 0.5 x ( 1 + t a n h ( 2 / π ( x + 0.044715 x 3 ) ) ) f(x) = 0.5x (1 + tanh(\sqrt{2 / \pi} (x + 0.044715x^3))) f(x)=0.5x(1+tanh(2/π (x+0.044715x3)))
图像:
公式:
f ( x ) = x 1 1 + e − β x = x ∗ s i g m o i d ( β x ) f(x) = x\frac{1}{1 + e^{-\beta x}} = x * sigmoid(\beta x) f(x)=x1+e−βx1=x∗sigmoid(βx)
公式:
f ( x ) = x R e l u 6 ( x + 3 ) 6 f(x) = x\frac{Relu6(x + 3)}{6} f(x)=x6Relu6(x+3)
图像:
公式:
f ( x ) = x ∗ t a n h ( l n ( 1 + e x ) ) f(x) = x * tanh(ln(1+e^x)) f(x)=x∗tanh(ln(1+ex))
图像:
公式:
f ( x ) = m a x ( w 1 T x + b 1 , w 2 T x + b 2 , ⋅ ⋅ ⋅ , w n T x + b n ) f(x) = max(w^T_{1}x + b_1, w^T_{2}x + b_2, ···, w^T_{n}x + b_n) f(x)=max(w1Tx+b1,w2Tx+b2,⋅⋅⋅,wnTx+bn)
https://blog.csdn.net/bqw18744018044/article/details/81193241
http://www.360doc.com/content/20/0323/23/99071_901255748.shtml
https://blog.csdn.net/weixin_39107928/article/details/102807920
https://blog.csdn.net/weixin_44106928/article/details/103072722
https://baijiahao.baidu.com/s?id=1653421414340022957&wfr=spider&for=pc
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。