赞
踩
(1)
lim
x
→
0
sin
x
x
=
1
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
limx→0xsinx=1, 推广形式
lim
f
(
x
)
→
0
sin
f
(
x
)
f
(
x
)
=
1
\lim _{f(x) \rightarrow 0} \frac{\sin f(x)}{f(x)}=1
limf(x)→0f(x)sinf(x)=1.
(2)
lim
x
→
∞
(
1
+
1
x
)
x
=
e
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^x=\mathrm{e}
limx→∞(1+x1)x=e, 推广形式
lim
x
→
0
(
1
+
x
)
1
x
=
e
,
lim
f
(
x
)
→
∞
[
1
+
1
f
(
x
)
]
f
(
x
)
=
e
\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=\mathrm{e}, \lim _{f(x) \rightarrow \infty}\left[1+\frac{1}{f(x)}\right]^{f(x)}=\mathrm{e}
limx→0(1+x)x1=e,limf(x)→∞[1+f(x)1]f(x)=e
(1) 当 x → 0 x \rightarrow 0 x→0 时,常用的等价无穷小
(2) 当 n → ∞ n \rightarrow \infty n→∞ 或 x → ∞ x \rightarrow \infty x→∞ 时,常用的极限公式
为 0 .
sin
x
=
x
−
1
3
!
x
3
+
o
(
x
3
)
,
cos
x
=
1
−
1
2
!
x
2
+
1
4
!
x
4
+
o
(
x
4
)
,
tan
x
=
x
+
1
3
x
3
+
o
(
x
3
)
,
arcsin
x
=
x
+
1
3
!
x
3
+
o
(
x
3
)
,
arctan
x
=
x
−
1
3
x
3
+
o
(
x
3
)
,
ln
(
1
+
x
)
=
x
−
1
2
x
2
+
1
3
x
3
+
o
(
x
3
)
,
e
x
=
1
+
x
+
1
2
!
x
2
+
1
3
!
x
3
+
o
(
x
3
)
,
(
1
+
x
)
a
=
1
+
a
x
+
a
(
a
−
1
)
2
!
x
2
+
o
(
x
2
)
.
当 x → 0 x \rightarrow 0 x→0 时,由以上公式可以得到以下几组“差函数”的等价无穷小代换式:
x − sin x ∼ x 3 6 , tan x − x ∼ x 3 3 , x − ln ( 1 + x ) ∼ x 2 2 x-\sin x \sim \frac{x^3}{6}, \quad \tan x-x \sim \frac{x^3}{3}, \quad x-\ln (1+x) \sim \frac{x^2}{2} x−sinx∼6x3,tanx−x∼3x3,x−ln(1+x)∼2x2, arcsin x − x ∼ x 3 6 , x − arctan x ∼ x 3 3 \arcsin x-x \sim \frac{x^3}{6}, \quad x-\arctan x \sim \frac{x^3}{3} arcsinx−x∼6x3,x−arctanx∼3x3.
(
x
μ
)
′
=
μ
x
μ
−
1
(
μ
为
常
数
)
,
(
a
x
)
′
=
a
x
ln
a
(
a
>
0
,
a
≠
1
)
,
(
log
a
x
)
′
=
1
x
ln
a
(
a
>
0
,
a
≠
1
)
,
(
ln
x
)
′
=
1
x
,
(
sin
x
)
′
=
cos
x
,
(
cos
x
)
′
=
−
sin
x
,
(
arcsin
x
)
′
=
1
1
−
x
2
,
(
arccos
x
)
′
=
−
1
1
−
x
2
,
(
tan
x
)
′
=
sec
2
x
,
(
cot
x
)
′
=
−
csc
2
x
,
(
arctan
x
)
′
=
1
1
+
x
2
,
(
arccot
x
)
′
=
−
1
1
+
x
2
,
(
sec
x
)
′
=
sec
x
tan
x
,
(
csc
x
)
′
=
−
csc
x
cot
x
,
[
ln
(
x
+
x
2
+
1
)
]
′
=
1
x
2
+
1
,
,
[
ln
(
x
+
x
2
−
1
)
]
′
=
1
x
2
−
1
三角函数六边形记忆法:
注: 变限积分求导公式.
设
F
(
x
)
=
∫
φ
2
(
x
)
φ
1
(
x
)
f
(
t
)
d
t
F(x)=\int_{\varphi_2(x)}^{\varphi_1(x)} f(t) \mathrm{d} t
F(x)=∫φ2(x)φ1(x)f(t)dt, 其中
f
(
x
)
f(x)
f(x) 在
[
a
,
b
]
[a, b]
[a,b] 上连续, 可导函数
φ
1
(
x
)
\varphi_1(x)
φ1(x) 和
φ
2
(
x
)
\varphi_2(x)
φ2(x) 的值域在
[
a
,
b
]
[a, b]
[a,b] 上, 则在函数
φ
1
(
x
)
\varphi_1(x)
φ1(x) 和
φ
2
(
x
)
\varphi_2(x)
φ2(x) 的公共定义域上有:
F
′
(
x
)
=
d
d
x
[
∫
φ
1
(
x
)
φ
2
(
x
)
f
(
t
)
d
t
]
=
f
[
φ
2
(
x
)
]
φ
2
′
(
x
)
−
f
[
φ
1
(
x
)
]
φ
1
′
(
x
)
.
F^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x}\left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(t) \mathrm{d} t\right]=f\left[\varphi_2(x)\right] \varphi_2^{\prime}(x)-f\left[\varphi_1(x)\right] \varphi_1^{\prime}(x) .
F′(x)=dxd[∫φ1(x)φ2(x)f(t)dt]=f[φ2(x)]φ2′(x)−f[φ1(x)]φ1′(x).
(1) e x = 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + o ( x n ) \mathrm{e}^x=1+x+\frac{1}{2 !} x^2+\cdots+\frac{1}{n !} x^n+o\left(x^n\right) ex=1+x+2!1x2+⋯+n!1xn+o(xn).
(2) sin x = x − 1 3 ! x 3 + ⋯ + ( − 1 ) n 1 ( 2 n + 1 ) ! x 2 n + 1 + o ( x 2 n + 1 ) \sin x=x-\frac{1}{3 !} x^3+\cdots+(-1)^n \frac{1}{(2 n+1) !} x^{2 n+1}+o\left(x^{2 n+1}\right) sinx=x−3!1x3+⋯+(−1)n(2n+1)!1x2n+1+o(x2n+1).
(3) cos x = 1 − 1 2 ! x 2 + 1 4 ! x 4 − ⋯ + ( − 1 ) n 1 ( 2 n ) ! x 2 n + o ( x 2 n ) \cos x=1-\frac{1}{2 !} x^2+\frac{1}{4 !} x^4-\cdots+(-1)^n \frac{1}{(2 n) !} x^{2 n}+o\left(x^{2 n}\right) cosx=1−2!1x2+4!1x4−⋯+(−1)n(2n)!1x2n+o(x2n).
(4) 1 1 − x = 1 + x + x 2 + ⋯ + x n + o ( x n ) , ∣ x ∣ < 1 \frac{1}{1-x}=1+x+x^2+\cdots+x^n+o\left(x^n\right),|x|<1 1−x1=1+x+x2+⋯+xn+o(xn),∣x∣<1.
(5) 1 1 + x = 1 − x + x 2 − ⋯ + ( − 1 ) n x n + o ( x n ) , ∣ x ∣ < 1 \frac{1}{1+x}=1-x+x^2-\cdots+(-1)^n x^n+o\left(x^n\right),|x|<1 1+x1=1−x+x2−⋯+(−1)nxn+o(xn),∣x∣<1.
(6) ln ( 1 + x ) = x − x 2 2 + x 3 3 − ⋯ + ( − 1 ) n − 1 x n n + o ( x n ) , − 1 < x ⩽ 1 \ln (1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\cdots+(-1)^{n-1} \frac{x^n}{n}+o\left(x^n\right),-1<x \leqslant 1 ln(1+x)=x−2x2+3x3−⋯+(−1)n−1nxn+o(xn),−1<x⩽1.
(7) ( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + ⋯ + a ( a − 1 ) ⋯ ( a − n + 1 ) n ! x n + (1+x)^a=1+a x+\frac{a(a-1)}{2 !} x^2+\cdots+\frac{a(a-1) \cdots(a-n+1)}{n !} x^n+ (1+x)a=1+ax+2!a(a−1)x2+⋯+n!a(a−1)⋯(a−n+1)xn+ o ( x n ) o\left(x^n\right) o(xn).
(1) 曲率
d
y
d
x
=
d
y
/
d
t
d
x
/
d
t
=
ψ
′
(
t
)
φ
′
(
t
)
,
令
其
为
F
(
t
)
,
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\psi^{\prime}(t)}{\varphi^{\prime}(t)},令其为F(t),\\
dxdy=dx/dtdy/dt=φ′(t)ψ′(t),令其为F(t),
d
2
y
d
x
2
=
d
(
d
y
d
x
)
d
x
=
d
(
d
y
d
x
)
/
d
t
d
x
/
d
t
=
ψ
′
′
(
t
)
φ
′
(
t
)
−
ψ
′
(
t
)
φ
′
′
(
t
)
[
φ
′
(
t
)
]
3
=
d
(
F
(
t
)
)
/
d
t
d
x
/
d
t
=
F
′
(
t
)
φ
′
(
t
)
\frac{d^{2} y}{d x^{2}}=\frac{d\left(\frac{d y}{d x}\right)}{d x}=\frac{d\left(\frac{d y}{d x}\right) / d t}{d x / d t}=\frac{\psi^{\prime \prime}(t) \varphi^{\prime}(t)-\psi^{\prime}(t) \varphi^{\prime \prime}(t)}{\left[\varphi^{\prime}(t)\right]^{3}} = \frac{d(F(t))/dt}{dx/dt} = \frac{F^{\prime}(t)}{\varphi^{\prime}(t)}
dx2d2y=dxd(dxdy)=dx/dtd(dxdy)/dt=[φ′(t)]3ψ′′(t)φ′(t)−ψ′(t)φ′′(t)=dx/dtd(F(t))/dt=φ′(t)F′(t)
可以记最后那个简单的式子
(2) 曲率半径
R
=
1
K
(
K
≠
0
)
R=\frac{1}{K}(K \neq 0)
R=K1(K=0)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。