赞
踩
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。
卷积神经网络,简称为卷积网络,与普通神经网络的区别是它的卷积层内的神经元只覆盖输入特征局部范围的单元,具有稀疏连接(sparse connectivity)和权重共享(weight shared)的特点,而且其中的过滤器可以做到对图像关键特征的抽取。因为这一特点,卷积神经网络在图像识别方面能够给出更好的结果。
本项目通过基于PyTorch实现Minst数据集卷积神经网络分类模型。
本次建模数据来源于网络(本项目撰写人整理而成),数据统计如下:
查看数据:
关键代码:
数据集形状:
关键代码如下:
用Matplotlib工具的imshow ()方法绘制图片:
关键代码如下:
主要使用CNN层网络,用于目标分类。
6.2 迭代过程
评估指标主要包括准确率、查准率、查全率(召回率)、F1分值等等。
过上表可以看到,模型的准确率为99.14%,F1分值为0.9914,模型效果较好。
7.2 分类报告
从上图可以看出,分类为0的F1分值为0.99;分类为1的F1分值为0.99;分类为2的F1分值为0.99等等。
综上所述,本项目基于PyTorch实现卷积神经网络分类模型并对模型进行了评估,最终证明了我们提出的模型效果较好。
- # 本次机器学习项目实战所需的资料,项目资源如下:
-
- # 项目说明:
-
- # 链接:https://pan.baidu.com/s/1-21WvYyFkGZyghHo7RiGhQ
- # 提取码:nw36
更多项目实战,详见机器学习项目实战合集列表:
机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。