赞
踩
pip、conda换源:
pip临时换源:
- pip install -i https://mirrors.cernet.edu.cn/pypi/web/simple some-package
-
- # 这里的“https://mirrors.cernet.edu.cn/pypi/web/simple”是所换的源,“some-package”是你需要安装的包
设置pip默认源,避免每次下载依赖包都要加上一长串的国内源
pip config set global.index-url https://mirrors.cernet.edu.cn/pypi/web/simple
conda换源:
镜像站提供了 Anaconda 仓库与第三方源(conda-forge、msys2、pytorch 等),各系统都可以通过修改用户目录下的 .condarc
文件来使用镜像站。
不同系统下的 .condarc
目录如下:
Linux
: ${HOME}/.condarc
macOS
: ${HOME}/.condarc
Windows
: C:\Users\<YourUserName>\.condarc
注意:
Windows
用户无法直接创建名为 .condarc
的文件,可先执行 conda config --set show_channel_urls yes
生成该文件之后再修改。- cat <<'EOF' > ~/.condarc
- channels:
- - defaults
- show_channel_urls: true
- default_channels:
- - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
- custom_channels:
- conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
- pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
- EOF
更多详细内容可移步至 MirrorZ Help 查看
Huggingface:
使用 Hugging Face 官方提供的 huggingface-cli
命令行工具。安装依赖:
pip install -U huggingface_hub
安装好依赖包之后,执行以下代码:
- import os
- from huggingface_hub import hf_hub_download # Load model directly
-
- # 下载模型
- os.system('huggingface-cli download --resume-download internlm/internlm-chat-7b --local-dir your_path')
-
- # resume-download:断点续下(断网也可继续下载)
- # local-dir:本地存储路径。(linux 环境下需要填写绝对路径)
-
- hf_hub_download(repo_id="internlm/internlm-7b", filename="config.json")
-
- # repo_id: 模型的名称
- # filename: 下载的文件名称
ModelScope:
安装依赖:
- pip install modelscope==1.9.5
- pip install transformers==4.35.2
安装完成后:
- import torch
- from modelscope import snapshot_download, AutoModel, AutoTokenizer
- import os
- model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm-chat-7b', cache_dir='your path', revision='master')
-
- # cache_dir:最好写成绝对路径
OpenXLAB:
安装依赖:
pip install -U openxlab
执行代码:
- from openxlab.model import download
- download(model_repo='OpenLMLab/InternLM-7b', model_name='InternLM-7b', output='your local path')
目前显卡比较短缺,各位大佬各显神通吧,这里以 InternStudio 为例
进入 conda
环境之后,使用以下命令从本地克隆一个已有的 pytorch 2.0.1
的环境,运行时间可能比较长,耐心等待
- bash # 请每次使用 jupyter lab 打开终端时务必先执行 bash 命令进入 bash 中
- conda create --name internlm-demo --clone=/root/share/conda_envs/internlm-base
然后用下面命令激活虚拟环境,并安装所需环境:
- conda activate internlm-demo
-
-
- ————————————————————————————demo所需的环境依赖
- # 升级pip
- python -m pip install --upgrade pip
-
- pip install modelscope==1.9.5
- pip install transformers==4.35.2
- pip install streamlit==1.24.0
- pip install sentencepiece==0.1.99
- pip install accelerate==0.24.1
根据之前介绍的模型下载的三种方式都可以实现模型的下载,但是速度相对较慢,这里我使用的是InternStudio 平台的 share
目录下已经为我们准备好的 InternLM
模型。
- mkdir -p /root/model/Shanghai_AI_Laboratory
- cp -r /root/share/temp/model_repos/internlm-chat-7b /root/model/Shanghai_AI_Laboratory
在 /root
路径下新建 code
目录,然后切换路径, clone 代码
- cd /root/code
- git clone https://gitee.com/internlm/InternLM.git
-
-
- ## 切换 commit 版本,可以让大家更好的复现
- cd InternLM
- git checkout 3028f07cb79e5b1d7342f4ad8d11efad3fd13d17
将 /root/code/InternLM/web_demo.py
中 29 行和 33 行的模型更换为本地的 /root/model/Shanghai_AI_Laboratory/internlm-chat-7b
。
在 /root/code/InternLM
目录下新建一个 cli_demo.py
文件,将以下代码填入其中:
- import torch
- from transformers import AutoTokenizer, AutoModelForCausalLM
-
-
- model_name_or_path = "/root/model/Shanghai_AI_Laboratory/internlm-chat-7b"
-
- tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
- model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
- model = model.eval()
-
- system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- - InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- - InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
- """
-
- messages = [(system_prompt, '')]
-
- print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")
-
- while True:
- input_text = input("User >>> ")
- input_text = input_text.replace(' ', '')
- if input_text == "exit":
- break
- response, history = model.chat(tokenizer, input_text, history=messages)
- messages.append((input_text, response))
- print(f"robot >>> {response}")
然后在终端运行:python /root/code/InternLM/cli_demo.py 即可
运行 /root/code/InternLM
目录下的 web_demo.py
文件,输入以下命令后,l利用SSH密钥将端口映射到本地。在本地浏览器输入 http://127.0.0.1:6006
即可。
- bash
- conda activate internlm-demo # 首次进入 vscode 会默认是 base 环境,所以首先切换环境
- cd /root/code/InternLM
- streamlit run web_demo.py --server.address 127.0.0.1 --server.port 6006
Lagent所需环境和InternLM环境一直,若运行环境已经安装好依赖包可直接跳过:
- # 升级pip
- python -m pip install --upgrade pip
-
- pip install modelscope==1.9.5
- pip install transformers==4.35.2
- pip install streamlit==1.24.0
- pip install sentencepiece==0.1.99
- pip install accelerate==0.24.1
Lagnet是智能体构建的工具,基础模型可以直接使用InterLM模型,无需重复下载。
切换路径到 /root/code
克隆 lagent
仓库,并通过 pip install -e .
源码安装 Lagent
- cd /root/code
- git clone https://gitee.com/internlm/lagent.git
- cd /root/code/lagent
- git checkout 511b03889010c4811b1701abb153e02b8e94fb5e # 尽量保证和教程commit版本一致
- pip install -e . # 源码安装
将 /root/code/lagent/examples/react_web_demo.py
内容替换为以下代码:
- import copy
- import os
-
- import streamlit as st
- from streamlit.logger import get_logger
-
- from lagent.actions import ActionExecutor, GoogleSearch, PythonInterpreter
- from lagent.agents.react import ReAct
- from lagent.llms import GPTAPI
- from lagent.llms.huggingface import HFTransformerCasualLM
-
-
- class SessionState:
-
- def init_state(self):
- """Initialize session state variables."""
- st.session_state['assistant'] = []
- st.session_state['user'] = []
-
- #action_list = [PythonInterpreter(), GoogleSearch()]
- action_list = [PythonInterpreter()]
- st.session_state['plugin_map'] = {
- action.name: action
- for action in action_list
- }
- st.session_state['model_map'] = {}
- st.session_state['model_selected'] = None
- st.session_state['plugin_actions'] = set()
-
- def clear_state(self):
- """Clear the existing session state."""
- st.session_state['assistant'] = []
- st.session_state['user'] = []
- st.session_state['model_selected'] = None
- if 'chatbot' in st.session_state:
- st.session_state['chatbot']._session_history = []
-
-
- class StreamlitUI:
-
- def __init__(self, session_state: SessionState):
- self.init_streamlit()
- self.session_state = session_state
-
- def init_streamlit(self):
- """Initialize Streamlit's UI settings."""
- st.set_page_config(
- layout='wide',
- page_title='lagent-web',
- page_icon='./docs/imgs/lagent_icon.png')
- # st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
- st.sidebar.title('模型控制')
-
- def setup_sidebar(self):
- """Setup the sidebar for model and plugin selection."""
- model_name = st.sidebar.selectbox(
- '模型选择:', options=['gpt-3.5-turbo','internlm'])
- if model_name != st.session_state['model_selected']:
- model = self.init_model(model_name)
- self.session_state.clear_state()
- st.session_state['model_selected'] = model_name
- if 'chatbot' in st.session_state:
- del st.session_state['chatbot']
- else:
- model = st.session_state['model_map'][model_name]
-
- plugin_name = st.sidebar.multiselect(
- '插件选择',
- options=list(st.session_state['plugin_map'].keys()),
- default=[list(st.session_state['plugin_map'].keys())[0]],
- )
-
- plugin_action = [
- st.session_state['plugin_map'][name] for name in plugin_name
- ]
- if 'chatbot' in st.session_state:
- st.session_state['chatbot']._action_executor = ActionExecutor(
- actions=plugin_action)
- if st.sidebar.button('清空对话', key='clear'):
- self.session_state.clear_state()
- uploaded_file = st.sidebar.file_uploader(
- '上传文件', type=['png', 'jpg', 'jpeg', 'mp4', 'mp3', 'wav'])
- return model_name, model, plugin_action, uploaded_file
-
- def init_model(self, option):
- """Initialize the model based on the selected option."""
- if option not in st.session_state['model_map']:
- if option.startswith('gpt'):
- st.session_state['model_map'][option] = GPTAPI(
- model_type=option)
- else:
- st.session_state['model_map'][option] = HFTransformerCasualLM(
- '/root/model/Shanghai_AI_Laboratory/internlm-chat-7b')
- return st.session_state['model_map'][option]
-
- def initialize_chatbot(self, model, plugin_action):
- """Initialize the chatbot with the given model and plugin actions."""
- return ReAct(
- llm=model, action_executor=ActionExecutor(actions=plugin_action))
-
- def render_user(self, prompt: str):
- with st.chat_message('user'):
- st.markdown(prompt)
-
- def render_assistant(self, agent_return):
- with st.chat_message('assistant'):
- for action in agent_return.actions:
- if (action):
- self.render_action(action)
- st.markdown(agent_return.response)
-
- def render_action(self, action):
- with st.expander(action.type, expanded=True):
- st.markdown(
- "<p style='text-align: left;display:flex;'> <span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'>插 件</span><span style='width:14px;text-align:left;display:block;'>:</span><span style='flex:1;'>" # noqa E501
- + action.type + '</span></p>',
- unsafe_allow_html=True)
- st.markdown(
- "<p style='text-align: left;display:flex;'> <span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'>思考步骤</span><span style='width:14px;text-align:left;display:block;'>:</span><span style='flex:1;'>" # noqa E501
- + action.thought + '</span></p>',
- unsafe_allow_html=True)
- if (isinstance(action.args, dict) and 'text' in action.args):
- st.markdown(
- "<p style='text-align: left;display:flex;'><span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'> 执行内容</span><span style='width:14px;text-align:left;display:block;'>:</span></p>", # noqa E501
- unsafe_allow_html=True)
- st.markdown(action.args['text'])
- self.render_action_results(action)
-
- def render_action_results(self, action):
- """Render the results of action, including text, images, videos, and
- audios."""
- if (isinstance(action.result, dict)):
- st.markdown(
- "<p style='text-align: left;display:flex;'><span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'> 执行结果</span><span style='width:14px;text-align:left;display:block;'>:</span></p>", # noqa E501
- unsafe_allow_html=True)
- if 'text' in action.result:
- st.markdown(
- "<p style='text-align: left;'>" + action.result['text'] +
- '</p>',
- unsafe_allow_html=True)
- if 'image' in action.result:
- image_path = action.result['image']
- image_data = open(image_path, 'rb').read()
- st.image(image_data, caption='Generated Image')
- if 'video' in action.result:
- video_data = action.result['video']
- video_data = open(video_data, 'rb').read()
- st.video(video_data)
- if 'audio' in action.result:
- audio_data = action.result['audio']
- audio_data = open(audio_data, 'rb').read()
- st.audio(audio_data)
-
-
- def main():
- logger = get_logger(__name__)
- # Initialize Streamlit UI and setup sidebar
- if 'ui' not in st.session_state:
- session_state = SessionState()
- session_state.init_state()
- st.session_state['ui'] = StreamlitUI(session_state)
-
- else:
- st.set_page_config(
- layout='wide',
- page_title='lagent-web',
- page_icon='./docs/imgs/lagent_icon.png')
- # st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
- model_name, model, plugin_action, uploaded_file = st.session_state[
- 'ui'].setup_sidebar()
-
- # Initialize chatbot if it is not already initialized
- # or if the model has changed
- if 'chatbot' not in st.session_state or model != st.session_state[
- 'chatbot']._llm:
- st.session_state['chatbot'] = st.session_state[
- 'ui'].initialize_chatbot(model, plugin_action)
-
- for prompt, agent_return in zip(st.session_state['user'],
- st.session_state['assistant']):
- st.session_state['ui'].render_user(prompt)
- st.session_state['ui'].render_assistant(agent_return)
- # User input form at the bottom (this part will be at the bottom)
- # with st.form(key='my_form', clear_on_submit=True):
-
- if user_input := st.chat_input(''):
- st.session_state['ui'].render_user(user_input)
- st.session_state['user'].append(user_input)
- # Add file uploader to sidebar
- if uploaded_file:
- file_bytes = uploaded_file.read()
- file_type = uploaded_file.type
- if 'image' in file_type:
- st.image(file_bytes, caption='Uploaded Image')
- elif 'video' in file_type:
- st.video(file_bytes, caption='Uploaded Video')
- elif 'audio' in file_type:
- st.audio(file_bytes, caption='Uploaded Audio')
- # Save the file to a temporary location and get the path
- file_path = os.path.join(root_dir, uploaded_file.name)
- with open(file_path, 'wb') as tmpfile:
- tmpfile.write(file_bytes)
- st.write(f'File saved at: {file_path}')
- user_input = '我上传了一个图像,路径为: {file_path}. {user_input}'.format(
- file_path=file_path, user_input=user_input)
- agent_return = st.session_state['chatbot'].chat(user_input)
- st.session_state['assistant'].append(copy.deepcopy(agent_return))
- logger.info(agent_return.inner_steps)
- st.session_state['ui'].render_assistant(agent_return)
-
-
- if __name__ == '__main__':
- root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
- root_dir = os.path.join(root_dir, 'tmp_dir')
- os.makedirs(root_dir, exist_ok=True)
- main()
同样,建立ssh远程连接,在浏览器输入 http://127.0.0.1:6006
即可。
streamlit run /root/code/lagent/examples/react_web_demo.py --server.address 127.0.0.1 --server.port 6006
确实厉害,连MBA的题目都能轻松应对。
和之前两个demo一样的流程,从环境配置到模型下载
- # 进入 conda 环境之后,使用以下命令从本地克隆一个已有的pytorch 2.0.1 的环境
- conda create --name xcomposer-demo --clone=/root/share/conda_envs/internlm-base
-
-
- # 激活环境
- conda activate xcomposer-demo
-
-
-
- #安装依赖:
- pip install transformers==4.33.1
- pip install timm==0.4.12
- pip install sentencepiece==0.1.99
- pip install gradio==3.44.4
- pip install markdown2==2.4.10
- pip install xlsxwriter==3.1.2
- pip install einops accelerate
-
-
- # 模型下载:
- mkdir -p /root/model/Shanghai_AI_Laboratory
- cp -r /root/share/temp/model_repos/internlm-xcomposer-7b /root/model/Shanghai_AI_Laboratory
又是老朋友了
- cd /root/code
- git clone https://gitee.com/internlm/InternLM-XComposer.git
- cd /root/code/InternLM-XComposer
- git checkout 3e8c79051a1356b9c388a6447867355c0634932d # 最好保证和教程的 commit 版本一致
终端运行以下代码,同样是在完成ssh连接之后:
- cd /root/code/InternLM-XComposer
- python examples/web_demo.py \
- --folder /root/model/Shanghai_AI_Laboratory/internlm-xcomposer-7b \
- --num_gpus 1 \
- --port 6006
num_gpus 指的是使用gpu的数量,vgpu-smi可以查看gpu的使用情况
这里只是简单的介绍以下本次demo调用中使用的demo配置,具体可以看博客:ssh用法及命令_ssh命令大全-CSDN博客
1、在本地机器上打开 Power Shell
终端。在终端中,运行以下命令来生成 SSH 密钥对:
- ssh-keygen -t rsa
-
- ##-t表示类型选项,这里采用rsa加密算法
2、按 Enter
键接受默认值或输入自定义路径 ,默认情况下是在 ~/.ssh/
目录中。(其中有一个提示是要求设置私钥口令passphrase,不设置则为空,这里看心情吧,如果不放心私钥的安全可以设置一下)执行结束以后会在 /home/当前用户 目录下生成一个 .ssh 文件夹,其中包含私钥文件 id_rsa 和公钥文件 id_rsa.pub。
3、通过系统自带的 cat
工具查看文件内容:
- cat ~\.ssh\id_rsa.pub
- # ~ 是用户主目录的简写,.ssh 是SSH配置文件的默认存储目录,id_rsa.pub 是 SSH 公钥文件的默认名称。所以,cat ~\.ssh\id_rsa.pub 的意思是查看用户主目录下的 .ssh 目录中的 id_rsa.pub 文件的内容。
4、将公钥复制到剪贴板中,然后回到 InternStudio
控制台,点击配置 SSH Key。
在本
ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p 33090
地终端输入以下指令 .6006
是在服务器中打开的端口,而 33090
是根据开发机的端口进行更改
注意:再这些操作中可能会出现多次warning,个人经验是只要没报错就继续运行。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。