赞
踩
- #https://blog.csdn.net/weixin_34365635/article/details/86942414
-
- import tensorflow as tf
- from numpy.random import RandomState
-
- batch_size = 8
- w1 = tf.Variable(tf.random_normal([2,3],stddev=1,seed=1))
- w2 = tf.Variable(tf.random_normal([3,1],stddev=1,seed=1))
- x = tf.placeholder(tf.float32,shape=(None,2),name='x-input')
- y_= tf.placeholder(tf.float32,shape=(None,1),name='y-input')
- a=tf.matmul(x,w1)
- y=tf.matmul(a,w2)
- cross_entropy = -tf.reduce_mean(
- y_*tf.log(tf.clip_by_value(y,1e-10,1.0))
- )
-
- train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy)
-
- rdm = RandomState(1)
- dataset_size = 128
- X=rdm.rand(dataset_size,2)
- # for (x1,x2) in X:
- # print(x1+x2)
- # print(int(x1+x2 < 1))
- Y=[[int(x1+x2 < 1)] for (x1,x2) in X]
-
- with tf.Session() as sess:
- init_op = tf.initialize_all_variables()
- sess.run(init_op)
- print(sess.run(w1))
- print(sess.run(w2))
- sess.close()
-
- # sess = tf.Session()
- # init_op = tf.initialize_all_variables()
- # sess.run(init_op)
- # STEPS = 500
- # for i in range(STEPS):
- # start = (i * batch_size) % dataset_size
- # end = min(start + batch_size, dataset_size)
- # sess.run(train_step,feed_dict={x: X[start:end], y_: Y[start:end]})
- # if i % 1000 == 0:
- # total_cross_entropy = sess.run(cross_entropy, feed_dict={x: X, y_: Y})
- # print("After %d training step(s),cross entropy on all data is %g" % (i, total_cross_entropy))
- # print(sess.run(w1))
- # print(sess.run(w2))
-

结果:
[[-0.8113182 1.4845988 0.06532937]
[-2.4427042 0.0992484 0.5912243 ]]
[[-0.8113182 ]
[ 1.4845988 ]
[ 0.06532937]]
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。