当前位置:   article > 正文

【深度学习】DQN网络代码详解_dqn代码

dqn代码

前面的话

代码作者是 莫烦 大佬。在github上可以找到代码原文。同时在视频网站上可以找到 莫烦 大佬的系列教学视频。
这里我用代码注释的形式标注了所有代码的含义,同时还有部分函数方法的简单用法。各位可以看情况细细研究或者知其大概。

代码部分

"""
This part of code is the DQN brain, which is a brain of the agent.
All decisions are made in here.
Using Tensorflow to build the neural network.

View more on my tutorial page: https://morvanzhou.github.io/tutorials/

Using:
Tensorflow: 1.0
gym: 0.7.3
"""

import numpy as np
import pandas as pd
import tensorflow as tf

# 设置随机数seed
np.random.seed(1)
tf.set_random_seed(1)


# Deep Q Network off-policy
class DeepQNetwork:
    def __init__(
            self,
            n_actions,
            n_features,
            learning_rate=0.01,
            reward_decay=0.9,
            e_greedy=0.9,
            replace_target_iter=300,
            memory_size=500,
            batch_size=32,
            e_greedy_increment=None,
            output_graph=False,
    ):
        self.n_actions = n_actions  # action num
        self.n_features = n_features  # state num
        self.lr = learning_rate  # 学习率
        self.gamma = reward_decay  # 折扣因子
        self.epsilon_max = e_greedy  # 贪婪决策概率
        self.replace_target_iter = replace_target_iter  # target和eval的参数更新间隔步
        self.memory_size = memory_size  # 记忆库大小
        self.batch_size = batch_size  # 批量大小
        self.epsilon_increment = e_greedy_increment  # greedy变化
        self.epsilon = 0 if e_greedy_increment is not None else self.epsilon_max

        # total learning step
        self.learn_step_counter = 0  # 计步器

        # initialize zero memory [s, a, r, s_]
        self.memory = np.zeros((self.memory_size,
                                n_features * 2 + 2))  # 初始化记忆库

        # consist of [target_net, evaluate_net]
        self._build_net()
        t_params = tf.get_collection('target_net_params')
        e_params = tf.get_collection('eval_net_params')
        #zip() 函数用于将可迭代对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的对象。
        self.replace_target_op = [
            tf.assign(t, e) for t, e in zip(t_params, e_params)
        ]

        self.sess = tf.Session()

        if output_graph:
            # $ tensorboard --logdir=logs
            # tf.train.SummaryWriter soon be deprecated, use following
            tf.summary.FileWriter("E:/Code/logs", self.sess.graph)

        self.sess.run(tf.global_variables_initializer())
        self.cost_his = []

    def _build_net(self):
        # ------------------ build evaluate_net ------------------
        ### eva-Network的输入s 类比 图片输入 是一个 列矩阵 形式
        ### tf.placeholder(s类型为32位浮点,[行向量],标签名字为s)
        ### 这里的 None 与 minibatch 的 size 相同
        self.s = tf.placeholder(
            tf.float32, [None, self.n_features], name='s')  # 输入 s
        ### 用于计算loss的Q现实值。
        ### 并不是本结构的输出,但需要扩展作用域
        self.q_target = tf.placeholder(
            tf.float32, [None, self.n_actions],
            name='Q_target')  # 输入 用于计算 loss function

        ### tf.variable_scope 创建eval_net的相关变量
        ### c_names是数组,中间层神经元个数10,正态分布随机数作为权值w,常量0.1作为偏置b
        with tf.variable_scope('eval_net'):
            c_names, n_l1, w_initializer, b_initializer = \
                ['eval_net_params', tf.GraphKeys.GLOBAL_VARIABLES], 10, \
                tf.random_normal_initializer(0., 0.3), tf.constant_initializer(0.1)

            # 第一层,w1 b1 以及输出 l1 = 激活函数( input s * w1 + b1 )
            # first layer. collections is used later when assign to target net
            with tf.variable_scope('l1'):
                ## get_variable('name',[shape],<initializer>)
                ## 权值矩阵大小为 features行 * n_l1列
                ## 偏置矩阵大小为 1行 * n_l1列
                w1 = tf.get_variable(
                    'w1', [self.n_features, n_l1],
                    initializer=w_initializer,
                    collections=c_names)
                b1 = tf.get_variable(
                    'b1', [1, n_l1],
                    initializer=b_initializer,
                    collections=c_names)
                l1 = tf.nn.relu(tf.matmul(self.s, w1) + b1)
            # 上一层输出对应输入,这一层输出对应 action,输出层
            # 第二层,w2 b2 以及输出 q_eval = l1 * w2 + b2
            # second layer. collections is used later when assign to target net
            with tf.variable_scope('l2'):
                ## 权值矩阵大小为 n_l1行 * actions列
                ## 偏置矩阵大小为 1行 * actions列
                w2 = tf.get_variable(
                    'w2', [n_l1, self.n_actions],
                    initializer=w_initializer,
                    collections=c_names)
                b2 = tf.get_variable(
                    'b2', [1, self.n_actions],
                    initializer=b_initializer,
                    collections=c_names)
                self.q_eval = tf.matmul(l1, w2) + b2
        ### 定义evl_Network的更新依据 loss函数
        ### reduce_mean默认对所有数求平均,squared_difference最小二乘
        ### 最小二乘的结果是1*features,平均之后是1*1
        with tf.variable_scope('loss'):
            self.loss = tf.reduce_mean(
                tf.squared_difference(self.q_target, self.q_eval))
        ### 定义evl_Network训练方法
        with tf.variable_scope('train'):
            self._train_op = tf.train.RMSPropOptimizer(self.lr).minimize(
                self.loss)

        # ------------------ build target_net ------------------
        ### target net是旧版的evl_Net。需要给出 q_target 的计算依据 q_next
        ### 输入为 s_ 及下一时刻的state
        ### 网络结构与evl_Net相同
        self.s_ = tf.placeholder(
            tf.float32, [None, self.n_features], name='s_')  # 输入 下一时刻状态
        with tf.variable_scope('target_net'):
            c_names = ['target_net_params', tf.GraphKeys.GLOBAL_VARIABLES]
            # 结构与evl_Net相同
            # first layer. collections is used later when assign to target net
            with tf.variable_scope('l1'):
                w1 = tf.get_variable(
                    'w1', [self.n_features, n_l1],
                    initializer=w_initializer,
                    collections=c_names)
                b1 = tf.get_variable(
                    'b1', [1, n_l1],
                    initializer=b_initializer,
                    collections=c_names)
                l1 = tf.nn.relu(tf.matmul(self.s_, w1) + b1)

            # second layer. collections is used later when assign to target net
            with tf.variable_scope('l2'):
                w2 = tf.get_variable(
                    'w2', [n_l1, self.n_actions],
                    initializer=w_initializer,
                    collections=c_names)
                b2 = tf.get_variable(
                    'b2', [1, self.n_actions],
                    initializer=b_initializer,
                    collections=c_names)
                self.q_next = tf.matmul(l1, w2) + b2

    # 定义样本池
    def store_transition(self, s, a, r, s_):
        ### hasattr(object, name) 检查对象是否包含对应属性
        if not hasattr(self, 'memory_counter'):
            self.memory_counter = 0
        ### np.hastack 水平合并 数组
        transition = np.hstack((s, [a, r], s_))
        ### 样本池按列存放样本,每个样本为一个行向量
        ### 循环存储每个行动样本,index用于循环覆盖的起始行数
        index = self.memory_counter % self.memory_size
        self.memory[index, :] = transition

        self.memory_counter += 1

    def choose_action(self, observation):
        ### e-greedy 策略实现
        observation = observation[np.newaxis, :]

        if np.random.uniform() < self.epsilon:
            ### feed 与 placeholder 搭配使用 ,传递值
            actions_value = self.sess.run(
                self.q_eval, feed_dict={self.s: observation})
            ### np.argmax 取出最大值的索引
            action = np.argmax(actions_value)
        else:
            action = np.random.randint(0, self.n_actions)
        return action

    def learn(self):
        # 如需更新target参数,则更新
        if self.learn_step_counter % self.replace_target_iter == 0:
            self.sess.run(self.replace_target_op)
            print('\ntarget_params_replaced\n')

        # 随机抽取minibatch
        ## 当样本池未满的时候,依照计数器值随机选取,否则按照池大小选取。
        if self.memory_counter > self.memory_size:
            ### numpy.random.choice(a, size=None, replace=True, p=None)
            ### 从 a 中以概率 p 随机抽取 size 个。replace表示是否放回。
            sample_index = np.random.choice(
                self.memory_size, size=self.batch_size)
        else:
            sample_index = np.random.choice(
                self.memory_counter, size=self.batch_size)
        # 选择出需要训练的样本 batch_memory
        batch_memory = self.memory[sample_index, :]

        q_next, q_eval = self.sess.run(
            [self.q_next, self.q_eval],
            feed_dict={
            ### batch_memory格式为行向量,s(features),a,r,s_(feature)
            ### 分别取出 s 和 s_ 作为网络输入
            ### np矩阵切片 a[:,a:b:c] 从a到b列步长为c切片
            ### 下方对batch_memory切片取出s_ 和 s
                self.s_: batch_memory[:, -self.n_features:],  # 旧参数
                self.s: batch_memory[:, :self.n_features],  # 新参数
            })

        # 加上奖励和折扣因子作为q实际
        q_target = q_eval.copy()

        batch_index = np.arange(self.batch_size, dtype=np.int32)
        ### numpy 数组的四个方法:ndim返回维度数,shape返回维度数组,dtype返回元素类型,astype类型转换
        ### 对 batch_memroy 切片,取出 action / reward
        eval_act_index = batch_memory[:, self.n_features].astype(int)
        reward = batch_memory[:, self.n_features + 1]

        q_target[batch_index, eval_act_index] = reward + self.gamma * np.max(
            q_next, axis=1)
        """
        For example in this batch I have 2 samples and 3 actions:
        q_eval =
        [[1, 2, 3],
         [4, 5, 6]]

        q_target = q_eval =
        [[1, 2, 3],
         [4, 5, 6]]

        Then change q_target with the real q_target value w.r.t the q_eval's action.
        For example in:
            sample 0, I took action 0, and the max q_target value is -1;
            sample 1, I took action 2, and the max q_target value is -2:
        q_target =
        [[-1, 2, 3],
         [4, 5, -2]]

        So the (q_target - q_eval) becomes:
        [[(-1)-(1), 0, 0],
         [0, 0, (-2)-(6)]]

        We then backpropagate this error w.r.t the corresponding action to network,
        leave other action as error=0 cause we didn't choose it.
        """

        # 训练Eval_Net
        _, self.cost = self.sess.run([self._train_op, self.loss],
                                     feed_dict={
                                         self.s:
                                             batch_memory[:, :self.n_features],
                                         self.q_target:
                                             q_target
                                     })
        ### 记录每一步更新的 cost 用于训练后画图分析
        self.cost_his.append(self.cost)

        # increasing epsilon
        self.epsilon = self.epsilon + self.epsilon_increment if self.epsilon < self.epsilon_max else self.epsilon_max
        self.learn_step_counter += 1

    def plot_cost(self):
        import matplotlib.pyplot as plt
        plt.plot(np.arange(len(self.cost_his)), self.cost_his)
        plt.ylabel('Cost')
        plt.xlabel('training steps')
        plt.show()


if __name__ == '__main__':
    DQN = DeepQNetwork(3, 4, output_graph=True)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288

结语

最近事情太多,来不及上传笔记。关于numpy和tensorflow的使用会在有时间的时候更新总结。还有一些关于Machine Learning和CNN的笔记也会上传。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/凡人多烦事01/article/detail/296008
推荐阅读
相关标签
  

闽ICP备14008679号