赞
踩
创建了一个实例,可以给他绑定任何属性和方法,这些对另一个实例不起作用。而给类class绑定方法,所有实例都可以调用。在动态语言中,甚至支持在程序运行过程中动态地给class添加功能。
想要限制实例的属性,比如只能添加name
和age
属性,需要在定义class的时候,定义一个特殊的__slots__
变量,来限制该class实例能添加的属性。
class Student(object):
__slots__ = ('name', 'age') # 用tuple定义允许绑定的属性名称
>>> s = Student() # 创建新的实例
>>> s.name = 'Michael' # 绑定属性'name'
>>> s.age = 25 # 绑定属性'age'
>>> s.score = 99 # 绑定属性'score'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'score'
注意!__slots__
定义的属性仅对当前类实例起作用,对继承的子类是不起作用的:
>>> class GraduateStudent(Student):
... pass
...
>>> g = GraduateStudent()
>>> g.score = 9999
除非在子类中也定义__slots__
,这样,子类实例允许定义的属性就是自身的__slots__
加上父类的__slots__
。
在绑定属性时,直接把属性暴露出去,就没办法检查参数。为了限制score
的范围,可以通过一个set_score()
方法来设置成绩,再通过一个get_score()
来获取成绩,这样,在set_score()
方法里,就可以检查参数。但是,这样又略显复杂。
装饰器(decorator) 可以给函数动态加上功能。对于类的方法,装饰器一样起作用。Python内置的@property
装饰器就是负责 把一个方法变成属性调用的:
class Student(object):
@property
def score(self):
return self._score
@score.setter
def score(self, value):
if not isinstance(value, int):
raise ValueError('score must be an integer!')
if value < 0 or value > 100:
raise ValueError('score must between 0 ~ 100!')
self._score = value
@property
的实现比较复杂,先考察如何使用。把一个getter
方法变成属性,只需要加上@property
就可以了,此时,@property
本身又创建了另一个装饰器@score.setter
,负责把一个setter
方法变成属性赋值,于是,我们就拥有一个可控的属性操作:
>>> s = Student()
>>> s.score = 60 # OK,实际转化为s.set_score(60)
>>> s.score # OK,实际转化为s.get_score()
60
>>> s.score = 9999
Traceback (most recent call last):
...
ValueError: score must between 0 ~ 100!
有了@property
,在对实例属性操作的时候,实际上是通过getter
和setter
方法来实现的。
还可以定义只读属性,只定义getter方法,不定义setter方法就是一个只读属性:
class Student(object):
@property
def birth(self):
return self._birth
@birth.setter
def birth(self, value):
self._birth = value
@property
def age(self):
return 2015 - self._birth
上面的birth
是可读写属性,而age
就是一个只读属性。
要特别注意:属性的方法名不要和实例变量重名。
class Student(object):
# 方法名称和实例变量均为birth:
@property
def birth(self):
return self.birth
这是因为调用s.birth
时,首先转换为方法调用,在执行return self.birth
时,又视为访问self
的属性,于是又转换为方法调用,造成无限递归,最终导致栈溢出报错RecursionError
。
请利用@property
给一个Screen
对象加上width
和height
属性,以及一个只读属性resolution
:
函数实现:
class Screen(object): @property def width(self): return self._width @width.setter def width(self, width): self._width = width @property def height(self): return self._height @height.setter def height(self, height): self._height = height @property def resolution(self): return self._width * self._height
测试:
# 测试:
s = Screen()
s.width = 1024
s.height = 768
print('resolution =', s.resolution)
if s.resolution == 786432:
print('测试通过!')
else:
print('测试失败!')
测试结果:
PS D:\MyCode\PythonCode\Test> & D:/Tool/Python/Python311/python.exe d:/MyCode/PythonCode/Test/hello.py
resolution = 786432
测试通过!
通过多重继承,一个子类就可以同时获得多个父类的所有功能。
class Dog(Mammal, Runnable):
pass
在设计类的继承关系时,通常,主线都是单一继承下来的,例如,Dog
继承自Mammal
。但是,如果需要“混入”额外的功能,通过多重继承就可以实现,比如,让Dog
除了继承自Mammal
外,再同时继承Runnable
。这种设计通常称之为MixIn。为了更好地看出继承关系,把Runnable
改为RunnableMixIn
。
class Dog(Mammal, RunnableMixIn):
pass
MixIn的目的就是给一个类增加多个功能,所以,在设计类的时候,我们优先考虑通过多重继承来组合多个MixIn的功能,而不是设计多层次的复杂的继承关系。
Python自带的很多库也使用了MixIn。举个例子,Python自带了TCPServer
和UDPServer
这两类网络服务,而要同时服务多个用户就必须使用多进程或多线程模型,这两种模型由ForkingMixIn
和ThreadingMixIn
提供。通过组合,我们就可以创造出合适的服务来。
比如,编写一个多进程模式的TCP服务,定义如下:
class MyTCPServer(TCPServer, ForkingMixIn):
pass
编写一个多线程模式的UDP服务,定义如下:
class MyUDPServer(UDPServer, ThreadingMixIn):
pass
如果你打算搞一个更先进的协程模型,可以编写一个CoroutineMixIn
:
class MyTCPServer(TCPServer, CoroutineMixIn):
pass
Python中除了__slots__
和__len__()
,还有很多可定制的方法,请参考Python的官方文档。
定义一个Student类,打印一个实例:
>>> class Student(object):
... def __init__(self, name):
... self.name = name
...
>>> print(Student('Michael'))
<__main__.Student object at 0x109afb190>
打印出一堆<__main__.Student object at 0x109afb190>
,不好看。可以定义__str__()
方法,返回一个好看的字符串,而且容易看出实例内部重要的数据。
>>> class Student(object):
... def __init__(self, name):
... self.name = name
... def __str__(self):
... return 'Student object (name: %s)' % self.name
...
>>> print(Student('Michael'))
Student object (name: Michael)
直接敲变量不用print
,打印出来的实例还是不好看:
>>> s = Student('Michael')
>>> s
<__main__.Student object at 0x109afb310>
这是因为直接显示变量调用的不是__str__()
,而是__repr__()
,两者的区别是__str__()
返回用户看到的字符串,而__repr__()
返回程序开发者看到的字符串,也就是说,__repr__()
是为调试服务的。
解决办法是再定义一个__repr__()
。但是通常__str__()
和__repr__()
代码都是一样的,所以,有个偷懒的写法:
class Student(object):
def __init__(self, name):
self.name = name
def __str__(self):
return 'Student object (name=%s)' % self.name
__repr__ = __str__
如果一个类想被用于for ... in
循环,类似list或tuple那样,就必须实现一个__iter__()
方法,该方法返回一个迭代对象,然后,Python的for
循环就会不断调用该迭代对象的__next__()
方法拿到循环的下一个值,直到遇到StopIteration
错误时退出循环。
以斐波那契数列为例,写一个Fib
类,可以作用于for
循环:
class Fib(object):
def __init__(self):
self.a, self.b = 0, 1 # 初始化两个计数器a,b
def __iter__(self):
return self # 实例本身就是迭代对象,故返回自己
def __next__(self):
self.a, self.b = self.b, self.a + self.b # 计算下一个值
if self.a > 100000: # 退出循环的条件
raise StopIteration()
return self.a # 返回下一个值
现在,试试把Fib
实例作用于for
循环:
>>> for n in Fib():
... print(n)
...
1
1
2
3
5
...
46368
75025
Fib
实例虽然能作用于for
循环,看起来和list有点像,但是,把它当成list来使用还是不行。比如,取第5个元素:
>>> Fib()[5]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'Fib' object does not support indexing
要表现得像list那样按照下标取出元素,需要实现__getitem__()
方法:
class Fib(object):
def __getitem__(self, n):
a, b = 1, 1
for x in range(n):
a, b = b, a + b
return a
现在,就可以按下标访问数列的任意一项了:
>>> f = Fib()
>>> f[0]
1
>>> f[1]
1
>>> f[10]
89
>>> f[100]
573147844013817084101
但是list的切片方法,Fib却报错。原因是__getitem__()
传入的参数可能是一个int
,也可能是一个切片对象slice
,所以要做判断:
class Fib(object): def __getitem__(self, n): if isinstance(n, int): # n是索引 a, b = 1, 1 for x in range(n): a, b = b, a + b return a if isinstance(n, slice): # n是切片 start = n.start stop = n.stop if start is None: start = 0 a, b = 1, 1 L = [] for x in range(stop): if x >= start: L.append(a) a, b = b, a + b return L
现在试试Fib的切片:
>>> f = Fib()
>>> f[0:5]
[1, 1, 2, 3, 5]
>>> f[:10]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
但是没有对step参数和负数作处理:
>>> f[:10:2]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
此外,如果把对象看成字典dict,__getitem__()
的参数也可能是一个可以作key
的object
,例如str
。
与之对应的是__setitem__()
方法,把对象视作list或dict来对集合赋值。最后,还有一个__delitem__()
方法,用于删除某个元素。
总之,通过上面的方法,我们自己定义的类表现得和Python自带的list、tuple、dict没什么区别,这完全归功于动态语言的 “鸭子类型”,不需要强制继承某个接口。
正常情况下,当我们调用类的方法或属性时,如果不存在,就会报错。错误信息很清楚地告诉我们,没有找到score
这个attribute
。
要避免这个错误,除了可以加上一个score
属性外,Python还有另一个机制,那就是写一个__getattr__()
方法,动态返回一个属性。
class Student(object):
def __init__(self):
self.name = 'Michael'
def __getattr__(self, attr):
if attr=='score':
return 99
当调用不存在的属性时,比如score
,Python解释器会试图调用__getattr__(self, 'score')
来尝试获得属性,这样,我们就有机会返回score
的值:
>>> s = Student()
>>> s.name
'Michael'
>>> s.score
99
返回函数也是完全可以的:
class Student(object):
def __getattr__(self, attr):
if attr=='age':
return lambda: 25
只是调用方式要变为:
>>> s.age()
25
注意,只有在没有找到属性的情况下,才调用__getattr__
,已有的属性,比如name
,不会在__getattr__
中查找。
此外,注意到任意调用如s.abc
都会返回None
,这是因为我们定义的__getattr__
默认返回就是None
。要让class只响应特定的几个属性,我们就要按照约定,抛出AttributeError
的错误:
class Student(object):
def __getattr__(self, attr):
if attr=='age':
return lambda: 25
raise AttributeError('\'Student\' object has no attribute \'%s\'' % attr)
这实际上可以把一个类的所有属性和方法调用全部动态化处理了,不需要任何特殊手段。这种完全动态调用的特性可以针对完全动态的情况作调用。
一个对象实例可以有自己的属性和方法,当我们调用实例方法时,我们用instance.method()
来调用。任何类,想直接对实例进行调用,只需要定义一个__call__()
方法,__call__()
还可以定义参数。。请看示例:
class Student(object):
def __init__(self, name):
self.name = name
def __call__(self):
print('My name is %s.' % self.name)
调用方式如下:
>>> s = Student('Michael')
>>> s() # self参数不要传入
My name is Michael.
对实例进行直接调用就好比对一个函数进行调用一样。判断一个对象是否能被调用,能被调用的对象就是一个Callable
对象,通过callable()
函数,我们就可以判断一个对象是否是“可调用”对象。
>>> callable(Student())
True
>>> callable(max)
True
>>> callable([1, 2, 3])
False
>>> callable(None)
False
>>> callable('str')
False
定义常量时,一个办法是用大写变量通过整数来定义。例如月份:
JAN = 1
FEB = 2
MAR = 3
...
NOV = 11
DEC = 12
好处是简单,缺点是类型是int
,并且仍然是变量。
更好的方法是为这样的枚举类型定义一个class类型,然后,每个常量都是class的一个唯一实例。Python提供了Enum
类来实现这个功能:Enum
可以把一组相关常量定义在一个class中,且class不可变,而且成员可以直接比较。
from enum import Enum
Month = Enum('Month', ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'))
这样我们就获得了Month
类型的枚举类,可以直接使用Month.Jan
来引用一个常量,或者枚举它的所有成员:
for name, member in Month.__members__.items():
print(name, '=>', member, ',', member.value)
value
属性则是自动赋给成员的int
常量,默认从1
开始计数。
需要更精确地控制枚举类型,可以从Enum
派生出自定义类:
from enum import Enum, unique
@unique
class Weekday(Enum):
Sun = 0 # Sun的value被设定为0
Mon = 1
Tue = 2
Wed = 3
Thu = 4
Fri = 5
Sat = 6
@unique
装饰器可以帮助我们检查保证没有重复值。
访问这些枚举类型可以有若干种方法:
>>> day1 = Weekday.Mon >>> print(day1) Weekday.Mon >>> print(Weekday.Tue) Weekday.Tue >>> print(Weekday['Tue']) Weekday.Tue >>> print(Weekday.Tue.value) 2 >>> print(day1 == Weekday.Mon) True >>> print(day1 == Weekday.Tue) False >>> print(Weekday(1)) Weekday.Mon >>> print(day1 == Weekday(1)) True >>> Weekday(7) Traceback (most recent call last): ... ValueError: 7 is not a valid Weekday >>> for name, member in Weekday.__members__.items(): ... print(name, '=>', member) ... Sun => Weekday.Sun Mon => Weekday.Mon Tue => Weekday.Tue Wed => Weekday.Wed Thu => Weekday.Thu Fri => Weekday.Fri Sat => Weekday.Sat
可见,既可以用成员名称引用枚举常量,又可以直接根据value
的值获得枚举常量。
把Student的gender属性改造为枚举类型,可以避免使用字符串:
函数实现:
# -*- coding: utf-8 -*-
from enum import Enum, unique
class Gender(Enum):
Male = 0
Female = 1
class Student(object):
def __init__(self, name, gender):
self.name = name
self.gender = gender
测试:
bart = Student('Bart', Gender.Male)
if bart.gender == Gender.Male:
print('测试通过!')
else:
print('测试失败!')
测试结果:
PS D:\MyCode\PythonCode\Test> & D:/Tool/Python/Python311/python.exe d:/MyCode/PythonCode/Test/hello.py
测试通过!
动态语言和静态语言最大的不同,就是函数和类的定义,不是编译时定义的,而是运行时动态创建的。
比方说我们要定义一个Hello
的class,就写一个hello.py
模块:
class Hello(object):
def hello(self, name='world'):
print('Hello, %s.' % name)
当Python解释器载入hello
模块时,就会依次执行该模块的所有语句,执行结果就是动态创建出一个Hello
的class对象,测试如下:
>>> from hello import Hello
>>> h = Hello()
>>> h.hello()
Hello, world.
>>> print(type(Hello))
<class 'type'> # class的类型是type
>>> print(type(h))
<class 'hello.Hello'> # 实例的类型是class Hello
type()
函数可以查看一个类型或变量的类型,Hello
是一个class,它的类型就是type,而h
是一个实例,它的类型就是class Hello。
我们说class的定义是运行时动态创建的,而创建class的方法就是使用type()
函数。
type()
函数既可以返回一个对象的类型,又可以创建出新的类型,比如,我们可以通过type()
函数创建出Hello
类,而无需通过class Hello(object)...
的定义:
>>> def fn(self, name='world'): # 先定义函数
... print('Hello, %s.' % name)
...
>>> Hello = type('Hello', (object,), dict(hello=fn)) # 创建Hello class
>>> h = Hello()
>>> h.hello()
Hello, world.
>>> print(type(Hello))
<class 'type'>
>>> print(type(h))
<class '__main__.Hello'>
要创建一个class对象,type()
函数依次传入3个参数:
,
,例如(1,)
;fn
绑定到方法名hello
上。通过type()
函数创建的类和直接写class是完全一样的,因为Python解释器遇到class定义时,仅仅是扫描一下class定义的语法,然后也是调用type()
函数创建出class。
除了使用type()
动态创建类以外,要控制类的创建行为,还可以使用metaclass。
metaclass,直译为元类,简单的解释就是:
当我们定义了类以后,就可以根据这个类创建出实例,所以:先定义类,然后创建实例。
但是如果我们想创建出类呢?那就必须根据metaclass创建出类,所以:先定义metaclass,然后创建类。
连接起来就是:先定义metaclass,就可以创建类,最后创建实例。
所以,metaclass允许你创建类或者修改类。 换句话说,你 可以把类看成是metaclass创建出来的“实例”。
metaclass是Python面向对象里最难理解,也是最难使用的魔术代码。正常情况下,你不会碰到需要使用metaclass的情况。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。