当前位置:   article > 正文

XGboost中的调参经验_n_estimators

n_estimators

以回归任务为例,首先导入包

from xgboost import XGBRegressor as XGBR
# Implementation of the scikit-learn API for XGBoost regression
  • 1
  • 2

1. n_estimators:基本分类器的数量

通过画出n_estimator的学习曲线,这里得出几个重要的结论:

  • 首先,XGB中的树的数量决定了模型的学习能力,树的数量越多,模型的学习能力越强。只要XGB中树的数量足够了,即便只有很少的数据, 模型也能够学到训练数据100%的信息,所以XGB也是天生过拟合的模型。但在这种情况下,模型会变得非常不稳定。
  • 第二,XGB中树的数量很少的时候,对模型的影响较大,当树的数量已经很多的时候,对模型的影响比较小,只能有微弱的变化。当数据本身就处于过拟合的时候,再使用过多的树能达到的效果甚微,反而浪费计算资源。当唯一指标或者准确率给出的n_estimators看起来不太可靠的时候,我们可以改造学习曲线来帮助我们。
  • 第三,树的数量提升对模型的影响有极限,最开始,模型的表现会随着XGB的树的数量一起提升,但到达某个点之后,树的数量越多,模型的效果会逐步下降,这也说明了暴力增加n_estimators不一定有效果。这些都和随机森林中的参数n_estimators表现出一致的状态。在随机森林中我们总是先调整n_estimators,当n_estimators的极限已达到,我们才考虑其他参数,但XGB中的状况明显更加复杂,当数据集不太寻常的时候会更加复杂。这是我们要给出的第一个超参数,因此还是建议优先调整n_estimators,一般都不会建议一个太大的数目,300以下为佳

2. subsample:有放回随机抽样

确认了有多少棵树之后,我们来思考一个问题:建立了众多的树,怎么就能够保证模型整体的效果变强呢集成的目的是为了模型在样本上能表现出更好的效果,所以对于所有的提升集成算法,每构建一个评估器,集成模型的效果都会比之前更好。也就是随着迭代的进行,模型整体的效果必须要逐渐提升,最后要实现集成模型的效果最优。要实现这个目标,我们可以首先从训练数据上着手。

我们训练模型之前,必然会有一个巨大的数据集。我们都知道树模型是天生过拟合的模型,并且如果数据量太过巨大,树模型的计算会非常缓慢,因此,我们要对我们的原始数据集进行有放回抽样(bootstrap)。有放回的抽样每次只能抽取一个样本,若我们需要总共N个样本,就需要抽取N次。每次抽取一个样本的过程是独立的,这一次被抽到的样本会被放回数据集中,下一次还可能被抽到,因此抽出的数据集中,可能有一些重复的数据。
在这里插入图片描述
在无论是装袋还是提升的集成算法中,有放回抽样都是我们防止过拟合,让单一弱分类器变得更轻量的必要操作。实际应用中,每次抽取50%左右的数据就能够有不错的效果了。sklearn的随机森林类中也有名为boostrap的参数来帮助我们控制这种随机有放回抽样。同时,这样做还可以保证集成算法中的每个弱分类器(每棵树)都是不同的模型,基于不同的数据建立的自然是不同的模型,而集成一系列一模一样的弱分类器是没有意义的

在梯度提升树中,我们每一次迭代都要建立一棵新的树,因此我们每次迭代中,都要有放回抽取一个新的训练样本集合。不过,这并不能保证每次建新树后,集成的效果都比之前要好。因此我们规定,在梯度提升树中,每构建一个评估器,都让模型更加集中于数据集中容易被判错的那些样本。来看看下面的这个过程:
在这里插入图片描述

首先我们有一个巨大的数据集,在建第一棵树时,我们对数据进行初次又放回抽样,然后建模。建模完毕后,我们对模型进行一个评估,然后将模型预测错误的样本反馈给我们的数据集,一次迭代就算完成。紧接着,我们要建立第二棵决策树,于是开始进行第二次又放回抽样。但这次有放回抽样,和初次的随机有放回抽样就不同了,在这次的抽样中,我们加大了被第一棵树判断错误的样本的权重。也就是说,被第一棵树判断错误的样本,更有可能被我们抽中。

基于这个有权重的训练集来建模,我们新建的决策树就会更加倾向于这些权重更大的,很容易被判错的样本。建模完毕之后,我们又将判错的样本反馈给原始数据集。下一次迭代的时候,被判错的样本的权重会更大,新的模型会更加倾向于很难被判断的这些样本。如此反复迭代,越后面建的树,越是之前的树们判错样本上的专家,越专注于攻克那些之前的树们不擅长的数据。对于一个样本而言,它被预测错误的次数越多,被加大权重的次数也就越多。我们相信,只要弱分类器足够强大,随着模型整体不断在被判错的样本上发力,这些样本会渐渐被判断正确。如此就一定程度上实现了我们每新建一棵树模型的效果都会提升的目标。

在sklearn中,我们使用参数subsample来控制我们的随机抽样。在xgb和sklearn中,这个参数都默认为1且不能取到0,这说明我们无法控制模型是否进行随机有放回抽样,只能控制抽样抽出来的样本量大概是多少
在这里插入图片描述

那除了让模型更加集中于那些困难样本,采样还对模型造成了什么样的影响呢?采样会减少样本数量,而从学习曲线来看样本数量越少模型的过拟合会越严重,因为对模型来说,数据量越少模型学习越容易,学到的规则也会越具体越不适用于测试样本。所以subsample参数通常是在样本量本身很大的时候来调整和使用。

我们的模型现在正处于样本量过少并且过拟合的状态,根据学习曲线展现出来的规律,我们的训练样本量在200左右的时候,模型的效果有可能反而比更多训练数据的时候好,但这不代表模型的泛化能力在更小的训练样本量下会更强。正常来说样本量越大,模型才不容易过拟合,现在展现出来的效果,是由于我们的样本量太小造成的一个巧合。从这个角度来看,我们的subsample参数对模型的影响应该会非常不稳定,大概率应该是无法提升模型的泛化能力的,但也不乏提升模型的可能性。

数据集过少,降低抽样的比例反而让数据的效果更低,不如就让它保持默认

3. 重要参数学习率η或者为learning_rate

在XGB中,我们完整的迭代决策树的公式应该写作:

在这里插入图片描述
其中,η为迭代决策树时的步长(原著称为shrinkage),又叫做学习率(learning rate)。η越大,迭代的速度越快,算法的极限很快被达到,有可能无法收敛到真正的最佳。 越小,越有可能找到更精确的最佳值,更多的空间被留给了后面建立的树,但迭代速度会比较缓慢。

在这里插入图片描述
在sklearn中,我们使用参数learning_rate来干涉我们的学习速率:

在这里插入图片描述

η调参建议:

通常,我们不调整 ,即便调整,一般它也会在[0.01,0.2]之间变动。如果我们希望模型的效果更好,更多的可能是从树本身的角度来说,对树进行剪枝,而不会寄希望于调整 。

4. booster & xgb_model

梯度提升算法中不只有梯度提升树,XGB作为梯度提升算法的进化,自然也不只有树模型一种弱评估器。在XGB中,除了树模型,我们还可以选用线性模型,比如线性回归,来进行集成。虽然主流的XGB依然是树模型,但我们也可以使用其他的模型。基于XGB的这种性质,我们有参数“booster"来控制我们究竟使用怎样的弱评估器。
在这里插入图片描述

5. 目标函数objective

我们还可以从另一个角度去理解我们的目标函数。回忆一下我们曾经在随机森林中讲解过的方差-偏差困境。在机器学习中,我们用来衡量模型在未知数据上的准确率的指标,叫做泛化误差(Genelization error)。一个集成模型(f)在未知数据集(D)上的泛化误差,由方差(var),偏差(bais)和噪声(ε)共同决定,而泛化误差越小,模型就越理想。从下面的图可以看出来,方差和偏差是此消彼长的,并且模型的复杂度越高,方差越大,偏差越小。
在这里插入图片描述
方差可以被简单地解释为模型在不同数据集上表现出来地稳定性,而偏差是模型预测的准确度。那方差-偏差困境就可以对应到我们的中了:
在这里插入图片描述
第一项是衡量我们的偏差,模型越不准确,第一项就会越大。第二项是衡量我们的方差,模型越复杂,模型的学习就会越具体,到不同数据集上的表现就会差异巨大,方差就会越大。所以我们求解的最小值,其实是在求解方差与偏差的平衡点,以求模型的泛化误差最小,运行速度最快。我们知道树模型和树的集成模型都是学习天才,是天生过拟合的模型,因此大多数树模型最初都会出现在图像的右上方,我们必须通过剪枝来控制模型不要过拟合。现在XGBoost的损失函数中自带限制方差变大的部分,也就是说XGBoost会比其他的树模型更加聪明,不会轻易落到图像的右上方。可见,这个模型在设计的时候的确是考虑了方方面面,无怪XGBoost会如此强大了。

在应用中,我们使用参数“objective"来确定我们目标函数的第一部分,也就是衡量损失的部分:
在这里插入图片描述
常用的选择有:
在这里插入图片描述
在xgboost中,我们被允许自定义损失函数,但通常我们还是使用类已经为我们设置好的损失函数。我们的回归类中本来使用的就是reg:linear,因此在这里无需做任何调整。注意:分类型的目标函数导入回归类中会直接报错
在这里插入图片描述
由于xgb中所有的参数都需要自己的输入,并且objective参数的默认值是二分类,因此我们必须手动调节。试试看在其他参数相同的情况下,我们xgboost库本身和sklearn比起来,效果如何:

# XGboost的目标函数

# 默认reg:linear
reg = XGBR(n_estimators=180,random_state=420).fit(Xtrain,Ytrain)
print(reg.score(Xtest,Ytest))
MSE(Ytest,reg.predict(Xtest))

import xgboost as xgb

# 使用类DMatrix读取数据

dtrain = xgb.DMatrix(Xtrain,Ytrain)
dtest = xgb.DMatrix(Xtest,Ytest)

# 非常遗憾无法打开来查看,所以通常都是先读到pandas里面查看之后再放到DMatrix中

param = {'silent':False,'objective':'reg:linear',"eta":0.1}
num_round = 180
bst = xgb.train(param, dtrain, num_round)
from sklearn.metrics import r2_score
print(r2_score(Ytest,bst.predict(dtest)))
MSE(Ytest,bst.predict(dtest))


# result

0.9050526024842831
8.835224213421986

0.9260984298390122
6.87682821415069
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

看得出来,无论是从 还是从MSE的角度来看,都是xgb库本身表现更优秀,这也许是由于底层的代码是由不同团队创造的缘故。随着样本量的逐渐上升,sklearnAPI中调用的结果与xgboost中直接训练的结果会比较相似,如果希望的话可以分别训练,然后选取泛化误差较小的库。如果可以的话,建议脱离sklearnAPI直接调用xgboost库,因为xgboost库本身的调参要方便许多。

6. 参数化决策树fk(x):参数alpha,lambda

class xgboost.XGBRegressor (max_depth=3, learning_rate=0.1, n_estimators=100, silent=True,
objective=‘reg:linear’, booster=‘gbtree’, n_jobs=1, nthread=None, gamma=0, min_child_weight=1,
max_delta_step=0, subsample=1, colsample_bytree=1, colsample_bylevel=1, reg_alpha=0, reg_lambda=1,
scale_pos_weight=1, base_score=0.5, random_state=0, seed=None, missing=None, importance_type=‘gain’,**kwargs)

在这里插入图片描述
这个结构中有两部分内容,一部分是控制树结构的 ,另一部分则是我们的正则项。叶子数量 可以代表整个树结构,这是因为在XGBoost中所有的树都是CART树(二叉树),所以我们可以根据叶子的数量 判断出树的深度,而γ是我们自定的控制叶子数量的参数。

至于第二部分正则项,类比一下我们岭回归和Lasso的结构,参数α和λ的作用其实非常容易理解,他们都是控制正则化强度的参数,我们可以二选一使用,也可以一起使用加大正则化的力度。当 和 都为0的时候,目标函数就是普通的梯度提升树的目标函数。

在这里插入图片描述

**结论在实际应用中,正则化参数往往不是我们调参的最优选择,如果真的希望控制模型复杂度,我们会调整γ而不是调整这两个正则化参数,因此大家不必过于在意这两个参数最终如何影响了我们的模型效果。,如果真想看看这两个参数对模型的影响建议使用网格搜索法

网格搜索法参考连接

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/凡人多烦事01/article/detail/371875
推荐阅读
相关标签
  

闽ICP备14008679号