赞
踩
HWD是一种下采样模型,应用了小波变换的方法。
ADown是YOLOv9中的下采样模块,对不同的数据场景具有一定的可学习能力。
HWD-ADown的主要思想: 使用HWD替换ADown中的Conv模块。
- try:
- from mmcv.cnn import build_activation_layer, build_norm_layer
- from mmcv.ops.modulated_deform_conv import ModulatedDeformConv2d
- from mmengine.model import constant_init, normal_init
- except ImportError as e:
- pass
-
- """
- 论文地址:https://arxiv.org/pdf/2208.03641v1.pdf
- """
-
-
- class HWD_ADown(nn.Module):
- def __init__(self, c1, c2): # ch_in, ch_out, shortcut, kernels, groups, expand
- super().__init__()
- self.c = c2 // 2
- # self.cv1 = Conv(c1 // 2, self.c, 3, 2, 1)
- self.cv1 = HWD(c1 // 2, self.c, 3, 1, 1)
- self.cv2 = Conv(c1 // 2, self.c, 1, 1, 0)
-
- def forward(self, x):
- x = nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
- x1, x2 = x.chunk(2, 1)
- x1 = self.cv1(x1)
- x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1)
- x2 = self.cv2(x2)
- return torch.cat((x1, x2), 1)
-
-
- class HWD(nn.Module):
- def __init__(self, in_ch, out_ch, k, s, p):
- super(HWD, self).__init__()
- from pytorch_wavelets import DWTForward
- self.wt = DWTForward(J=1, mode='zero', wave='haar')
- self.conv = Conv(in_ch * 4, out_ch, k, s, p)
-
- def forward(self, x):
- yL, yH = self.wt(x)
- y_HL = yH[0][:, :, 0, ::]
- y_LH = yH[0][:, :, 1, ::]
- y_HH = yH[0][:, :, 2, ::]
- x = torch.cat([yL, y_HL, y_LH, y_HH], dim=1)
- x = self.conv(x)
- return x
阅读YOLOv9添加模块教程或使用下文操作
1. 将YOLOv9工程中models下common.py文件中的最下行增加模块的代码。
2. 将YOLOv9工程中models下yolo.py文件中的第681行(可能因版本变化而变化)增加以下代码。
RepNCSPELAN4, SPPELAN, HWD_ADown}:
- # YOLOv9
- # Powered bu https://blog.csdn.net/StopAndGoyyy
-
- # parameters
- nc: 80 # number of classes
- #depth_multiple: 0.33 # model depth multiple
- depth_multiple: 1 # model depth multiple
- #width_multiple: 0.25 # layer channel multiple
- width_multiple: 1 # layer channel multiple
- #activation: nn.LeakyReLU(0.1)
- #activation: nn.ReLU()
-
- # anchors
- anchors: 3
-
- # YOLOv9 backbone
- backbone:
- [
- [-1, 1, Silence, []],
-
- # conv down
- [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
-
- # conv down
- [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
-
- # elan-1 block
- [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 3
-
- # avg-conv down
- [-1, 1, ADown, [256]], # 4-P3/8
-
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 5
-
- # avg-conv down
- [-1, 1, ADown, [512]], # 6-P4/16
-
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 7
-
- # avg-conv down
- [-1, 1, HWD_ADown, [512]], # 8-P5/32
-
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 9
- ]
-
- # YOLOv9 head
- head:
- [
- # elan-spp block
- [-1, 1, SPPELAN, [512, 256]], # 10
-
- # up-concat merge
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
- [[-1, 7], 1, Concat, [1]], # cat backbone P4
-
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 13
-
- # up-concat merge
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
- [[-1, 5], 1, Concat, [1]], # cat backbone P3
-
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]], # 16 (P3/8-small)
-
- # avg-conv-down merge
- [-1, 1, ADown, [256]],
- [[-1, 13], 1, Concat, [1]], # cat head P4
-
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 19 (P4/16-medium)
-
- # avg-conv-down merge
- [-1, 1, ADown, [512]],
- [[-1, 10], 1, Concat, [1]], # cat head P5
-
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 22 (P5/32-large)
-
-
- # multi-level reversible auxiliary branch
-
- # routing
- [5, 1, CBLinear, [[256]]], # 23
- [7, 1, CBLinear, [[256, 512]]], # 24
- [9, 1, CBLinear, [[256, 512, 512]]], # 25
-
- # conv down
- [0, 1, Conv, [64, 3, 2]], # 26-P1/2
-
- # conv down
- [-1, 1, Conv, [128, 3, 2]], # 27-P2/4
-
- # elan-1 block
- [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 28
-
- # avg-conv down fuse
- [-1, 1, ADown, [256]], # 29-P3/8
- [[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30
-
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 31
-
- # avg-conv down fuse
- [-1, 1, ADown, [512]], # 32-P4/16
- [[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33
-
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 34
-
- # avg-conv down fuse
- [-1, 1, ADown, [512]], # 35-P5/32
- [[25, -1], 1, CBFuse, [[2]]], # 36
-
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 37
-
-
-
- # detection head
-
- # detect
- [[31, 34, 37, 16, 19, 22], 1, DualDDetect, [nc]], # DualDDetect(A3, A4, A5, P3, P4, P5)
- ]
欢迎关注!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。