赞
踩
import numpy as np import pandas as pd import datetime # datetime.date:date对象 import datetime # 也可以写 from datetime import date today = datetime.date.today() print(today,type(today)) print(str(today),type(str(today))) # datetime.date.today 返回今日 # 输出格式为 date类 t = datetime.date(2016,6,1) print(t,type(t)) # (年,月,日) → 直接得到当时日期
2019-06-05 <class 'datetime.date'>
2019-06-05 <class 'str'>
2016-06-01 <class 'datetime.date'>
# datetime.datetime:datetime对象 now = datetime.datetime.now() print(now,type(now)) print(str(now),type(str(now))) # .now()方法,输出当前时间 # 输出格式为 datetime类 # 可通过str()转化为字符串 t1 = datetime.datetime(2016,6,1) t2 = datetime.datetime(2014,1,1,12,44,33) print(t1,t2) # (年,月,日,时,分,秒),至少输入年月日 t3 = t2-t1 print(t3,type(t3)) # 相减得到时间差 —— timedelta
2019-06-05 12:59:21.172750 <class 'datetime.datetime'>
2019-06-05 12:59:21.172750 <class 'str'>
2016-06-01 00:00:00 2014-01-01 12:44:33
-882 days, 12:44:33 <class 'datetime.timedelta'>
# datetime.timedelta:时间差
today = datetime.datetime.today() # datetime.datetime也有today()方法
yestoday = today - datetime.timedelta(1) #
print(today)
print(yestoday)
print(today - datetime.timedelta(7))
# 时间差主要用作时间的加减法,相当于可被识别的时间“差值”
2019-06-05 13:01:23.440224
2019-06-04 13:01:23.440224
2019-05-29 13:01:23.440224
# parser.parse:日期字符串转换
from dateutil.parser import parse
date = '12-21-2017'
t = parse(date)
print(t,type(t))
# 直接将str转化成datetime.datetime
print(parse('2000-1-1'),'\n',
parse('5/1/2014'),'\n',
parse('5/1/2014', dayfirst = True),'\n', # 国际通用格式中,日在月之前,可以通过dayfirst来设置
parse('22/1/2014'),'\n',
parse('Jan 31, 1997 10:45 PM'))
# 各种格式可以解析,但无法支持中文
2017-12-21 00:00:00 <class 'datetime.datetime'>
2000-01-01 00:00:00
2014-05-01 00:00:00
2014-01-05 00:00:00
2014-01-22 00:00:00
1997-01-31 22:45:00
import datetime
from dateutil.parser import parse
print('當前时间:',datetime.datetime.now())
print(datetime.datetime(2017,5,1,12,30))
data = parse('2000/01/12',dayfirst=True)
print(data)
當前时间: 2019-06-05 13:10:36.467797
2017-05-01 12:30:00
2000-12-01 00:00:00
date = datetime.date(2000,5,1)
print(date.strftime('%Y{y}%m{m}%d{d}').format(y='年',m='月',d='日')) # Y m d
new_date = date + datetime.timedelta(1000)
print(new_date.strftime('%Y{y}%m{m}%d{d}').format(y='年',m='月',d='日'))
2000年05月01日
2003年01月26日
'''
【课程2.9】 Pandas时刻数据:Timestamp
时刻数据代表时间点,是pandas的数据类型,是将值与时间点相关联的最基本类型的时间序列数据
pandas.Timestamp()
'''
# pd.Timestamp()
import numpy as np
import pandas as pd
date1 = datetime.datetime(2016,12,1,12,45,30) # 创建一个datetime.datetime
date2 = '2017-12-21' # 创建一个字符串
t1 = pd.Timestamp(date1)
t2 = pd.Timestamp(date2)
print(t1,type(t1))
print(t2)
print(pd.Timestamp('2017-12-21 15:00:22'))
# 直接生成pandas的时刻数据 → 时间戳
# 数据类型为 pandas的Timestamp
2016-12-01 12:45:30 <class 'pandas._libs.tslibs.timestamps.Timestamp'>
2017-12-21 00:00:00
2017-12-21 15:00:22
# pd.to_datetime from datetime import datetime date1 = datetime(2016,12,1,12,45,30) date2 = '2017-12-21' t1 = pd.to_datetime(date1) t2 = pd.to_datetime(date2) print(t1,type(t1)) print(t2,type(t2)) # pd.to_datetime():如果是单个时间数据,转换成pandas的时刻数据,数据类型为Timestamp lst_date = [ '2017-12-21', '2017-12-22', '2017-12-23'] t3 = pd.to_datetime(lst_date) print(t3,type(t3)) # 多个时间数据,将会转换为pandas的DatetimeIndex
2016-12-01 12:45:30 <class 'pandas._libs.tslibs.timestamps.Timestamp'>
2017-12-21 00:00:00 <class 'pandas._libs.tslibs.timestamps.Timestamp'>
DatetimeIndex(['2017-12-21', '2017-12-22', '2017-12-23'], dtype='datetime64[ns]', freq=None) <class 'pandas.core.indexes.datetimes.DatetimeIndex'>
# pd.to_datetime → 多个时间数据转换时间戳索引 date1 = [datetime(2015,6,1),datetime(2015,7,1),datetime(2015,8,1),datetime(2015,9,1),datetime(2015,10,1)] date2 = ['2017-2-1','2017-2-2','2017-2-3','2017-2-4','2017-2-5','2017-2-6'] print(date1) print(date2) t1 = pd.to_datetime(date2) t2 = pd.to_datetime(date2) print(t1) print(t2) # 多个时间数据转换为 DatetimeIndex date3 = ['2017-2-1','2017-2-2','2017-2-3','hello world!','2017-2-5','2017-2-6'] t3 = pd.to_datetime(date3, errors = 'ignore') print(t3,type(t3)) # 当一组时间序列中夹杂其他格式数据,可用errors参数返回 # errors = 'ignore':不可解析时返回原始输入,这里就是直接生成一般数组 t4 = pd.to_datetime(date3, errors = 'coerce') print(t4,type(t4)) # errors = 'coerce':不可扩展,缺失值返回NaT(Not a Time),结果认为DatetimeIndex
[datetime.datetime(2015, 6, 1, 0, 0), datetime.datetime(2015, 7, 1, 0, 0), datetime.datetime(2015, 8, 1, 0, 0), datetime.datetime(2015, 9, 1, 0, 0), datetime.datetime(2015, 10, 1, 0, 0)]
['2017-2-1', '2017-2-2', '2017-2-3', '2017-2-4', '2017-2-5', '2017-2-6']
DatetimeIndex(['2017-02-01', '2017-02-02', '2017-02-03', '2017-02-04',
'2017-02-05', '2017-02-06'],
dtype='datetime64[ns]', freq=None)
DatetimeIndex(['2017-02-01', '2017-02-02', '2017-02-03', '2017-02-04',
'2017-02-05', '2017-02-06'],
dtype='datetime64[ns]', freq=None)
Index(['2017-2-1', '2017-2-2', '2017-2-3', 'hello world!', '2017-2-5',
'2017-2-6'],
dtype='object') <class 'pandas.core.indexes.base.Index'>
DatetimeIndex(['2017-02-01', '2017-02-02', '2017-02-03', 'NaT', '2017-02-05',
'2017-02-06'],
dtype='datetime64[ns]', freq=None) <class 'pandas.core.indexes.datetimes.DatetimeIndex'>
####### 课堂作业 #######
from datetime import datetime
import calendar
month = calendar.monthlen(2019,12)
dates = ['2017-12-{}'.format(i) for i in range(1,month+1)]
# print(list(dates))
dates = pd.to_datetime(list(dates))
n = (len(dates)+1)/2-1
print(dates[int(n)])
2017-12-16 00:00:00
# 作业2:请如图创建一个包含时间日期的txt文件,通过open语句读取后转化成DatetimeIndex
f = open('C:/Users/Hjx/Desktop/date.txt','r')
s = f.readline()
datelst = s.split(',')
print('读取txt文件为:\n',datelst,'\n------')
t = pd.to_datetime(datelst)
print('转化成DatetimeIndex为:\n',t,'\n------')
'''
【课程2.10】 Pandas时间戳索引:DatetimeIndex
核心:pd.date_range()
'''
# pd.DatetimeIndex()与TimeSeries时间序列
rng = pd.DatetimeIndex(['12/1/2017','12/2/2017','12/3/2017','12/4/2017','12/5/2017'])
print(rng,type(rng))
print(rng[0],type(rng[0]))
# 直接生成时间戳索引,支持str、datetime.datetime
# 单个时间戳为Timestamp,多个时间戳为DatetimeIndex
st = pd.Series(np.random.rand(len(rng)), index = rng)
print(st,type(st))
print(st.index)
# 以DatetimeIndex为index的Series,为TimeSries,时间序列
DatetimeIndex(['2017-12-01', '2017-12-02', '2017-12-03', '2017-12-04',
'2017-12-05'],
dtype='datetime64[ns]', freq=None) <class 'pandas.core.indexes.datetimes.DatetimeIndex'>
2017-12-01 00:00:00 <class 'pandas._libs.tslibs.timestamps.Timestamp'>
2017-12-01 0.314239
2017-12-02 0.688201
2017-12-03 0.106159
2017-12-04 0.075866
2017-12-05 0.663236
dtype: float64 <class 'pandas.core.series.Series'>
DatetimeIndex(['2017-12-01', '2017-12-02', '2017-12-03', '2017-12-04',
'2017-12-05'],
dtype='datetime64[ns]', freq=None)
# pd.date_range()-日期范围:生成日期范围 # 2种生成方式:①start + end; ②start/end + periods # 默认频率:day rng1 = pd.date_range('1/1/2017','1/10/2017', normalize=True) rng2 = pd.date_range(start = '1/1/2017', periods = 10) rng3 = pd.date_range(end = '1/30/2017 15:00:00', periods = 10) # 增加了时、分、秒 print(rng1,type(rng1)) print(rng2) print(rng3) print('-------') # 直接生成DatetimeIndex # pd.date_range(start=None, end=None, periods=None, freq='D', tz=None, normalize=False, name=None, closed=None, **kwargs) # start:开始时间 # end:结束时间 # periods:偏移量 # freq:频率,默认天,pd.date_range()默认频率为日历日,pd.bdate_range()默认频率为工作日 # tz:时区 rng4 = pd.date_range(start = '1/1/2017 15:30', periods = 10, name = 'hello world!', normalize = True) print(rng4) print('-------') # normalize:时间参数值正则化到午夜时间戳(这里最后就直接变成0:00:00,并不是15:30:00) # name:索引对象名称 print(pd.date_range('20170101','20170104')) # 20170101也可读取 print(pd.date_range('20170101','20170104',closed = 'right')) print(pd.date_range('20170101','20170104',closed = 'left')) print('-------') # closed:默认为None的情况下,左闭右闭,left则左闭右开,right则左开右闭 print(pd.bdate_range('20170101','20170107')) # pd.bdate_range()默认频率为工作日 print(list(pd.date_range(start = '1/1/2017', periods = 10))) # 直接转化为list,元素为Timestamp
DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04', '2017-01-05', '2017-01-06', '2017-01-07', '2017-01-08', '2017-01-09', '2017-01-10'], dtype='datetime64[ns]', freq='D') <class 'pandas.core.indexes.datetimes.DatetimeIndex'> DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04', '2017-01-05', '2017-01-06', '2017-01-07', '2017-01-08', '2017-01-09', '2017-01-10'], dtype='datetime64[ns]', freq='D') DatetimeIndex(['2017-01-21 15:00:00', '2017-01-22 15:00:00', '2017-01-23 15:00:00', '2017-01-24 15:00:00', '2017-01-25 15:00:00', '2017-01-26 15:00:00', '2017-01-27 15:00:00', '2017-01-28 15:00:00', '2017-01-29 15:00:00', '2017-01-30 15:00:00'], dtype='datetime64[ns]', freq='D') ------- DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04', '2017-01-05', '2017-01-06', '2017-01-07', '2017-01-08', '2017-01-09', '2017-01-10'], dtype='datetime64[ns]', name='hello world!', freq='D') ------- DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04'], dtype='datetime64[ns]', freq='D') DatetimeIndex(['2017-01-02', '2017-01-03', '2017-01-04'], dtype='datetime64[ns]', freq='D') DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03'], dtype='datetime64[ns]', freq='D') ------- DatetimeIndex(['2017-01-02', '2017-01-03', '2017-01-04', '2017-01-05', '2017-01-06'], dtype='datetime64[ns]', freq='B') [Timestamp('2017-01-01 00:00:00', freq='D'), Timestamp('2017-01-02 00:00:00', freq='D'), Timestamp('2017-01-03 00:00:00', freq='D'), Timestamp('2017-01-04 00:00:00', freq='D'), Timestamp('2017-01-05 00:00:00', freq='D'), Timestamp('2017-01-06 00:00:00', freq='D'), Timestamp('2017-01-07 00:00:00', freq='D'), Timestamp('2017-01-08 00:00:00', freq='D'), Timestamp('2017-01-09 00:00:00', freq='D'), Timestamp('2017-01-10 00:00:00', freq='D')]
# pd.date_range()-日期范围:频率(1) print(pd.date_range('2017/1/1','2017/1/4')) # 默认freq = 'D':每日历日 print(pd.date_range('2017/1/1','2017/1/4', freq = 'B')) # B:每工作日 print(pd.date_range('2017/1/1','2017/1/2', freq = 'H')) # H:每小时 print(pd.date_range('2017/1/1 12:00','2017/1/1 12:10', freq = 'T')) # T/MIN:每分 print(pd.date_range('2017/1/1 12:00:00','2017/1/1 12:00:10', freq = 'S')) # S:每秒 print(pd.date_range('2017/1/1 12:00:00','2017/1/1 12:00:10', freq = 'L')) # L:每毫秒(千分之一秒) print(pd.date_range('2017/1/1 12:00:00','2017/1/1 12:00:10', freq = 'U')) # U:每微秒(百万分之一秒) print(pd.date_range('2017/1/1','2017/2/1', freq = 'W-MON')) # W-MON:从指定星期几开始算起,每周 # 星期几缩写:MON/TUE/WED/THU/FRI/SAT/SUN print(pd.date_range('2017/1/1','2017/5/1', freq = 'WOM-2MON')) # WOM-2MON:每月的第几个星期几开始算,这里是每月第二个星期一
DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04'], dtype='datetime64[ns]', freq='D') DatetimeIndex(['2017-01-02', '2017-01-03', '2017-01-04'], dtype='datetime64[ns]', freq='B') DatetimeIndex(['2017-01-01 00:00:00', '2017-01-01 01:00:00', '2017-01-01 02:00:00', '2017-01-01 03:00:00', '2017-01-01 04:00:00', '2017-01-01 05:00:00', '2017-01-01 06:00:00', '2017-01-01 07:00:00', '2017-01-01 08:00:00', '2017-01-01 09:00:00', '2017-01-01 10:00:00', '2017-01-01 11:00:00', '2017-01-01 12:00:00', '2017-01-01 13:00:00', '2017-01-01 14:00:00', '2017-01-01 15:00:00', '2017-01-01 16:00:00', '2017-01-01 17:00:00', '2017-01-01 18:00:00', '2017-01-01 19:00:00', '2017-01-01 20:00:00', '2017-01-01 21:00:00', '2017-01-01 22:00:00', '2017-01-01 23:00:00', '2017-01-02 00:00:00'], dtype='datetime64[ns]', freq='H') DatetimeIndex(['2017-01-01 12:00:00', '2017-01-01 12:01:00', '2017-01-01 12:02:00', '2017-01-01 12:03:00', '2017-01-01 12:04:00', '2017-01-01 12:05:00', '2017-01-01 12:06:00', '2017-01-01 12:07:00', '2017-01-01 12:08:00', '2017-01-01 12:09:00', '2017-01-01 12:10:00'], dtype='datetime64[ns]', freq='T') DatetimeIndex(['2017-01-01 12:00:00', '2017-01-01 12:00:01', '2017-01-01 12:00:02', '2017-01-01 12:00:03', '2017-01-01 12:00:04', '2017-01-01 12:00:05', '2017-01-01 12:00:06', '2017-01-01 12:00:07', '2017-01-01 12:00:08', '2017-01-01 12:00:09', '2017-01-01 12:00:10'], dtype='datetime64[ns]', freq='S') DatetimeIndex([ '2017-01-01 12:00:00', '2017-01-01 12:00:00.001000', '2017-01-01 12:00:00.002000', '2017-01-01 12:00:00.003000', '2017-01-01 12:00:00.004000', '2017-01-01 12:00:00.005000', '2017-01-01 12:00:00.006000', '2017-01-01 12:00:00.007000', '2017-01-01 12:00:00.008000', '2017-01-01 12:00:00.009000', ... '2017-01-01 12:00:09.991000', '2017-01-01 12:00:09.992000', '2017-01-01 12:00:09.993000', '2017-01-01 12:00:09.994000', '2017-01-01 12:00:09.995000', '2017-01-01 12:00:09.996000', '2017-01-01 12:00:09.997000', '2017-01-01 12:00:09.998000', '2017-01-01 12:00:09.999000', '2017-01-01 12:00:10'], dtype='datetime64[ns]', length=10001, freq='L') DatetimeIndex([ '2017-01-01 12:00:00', '2017-01-01 12:00:00.000001', '2017-01-01 12:00:00.000002', '2017-01-01 12:00:00.000003', '2017-01-01 12:00:00.000004', '2017-01-01 12:00:00.000005', '2017-01-01 12:00:00.000006', '2017-01-01 12:00:00.000007', '2017-01-01 12:00:00.000008', '2017-01-01 12:00:00.000009', ... '2017-01-01 12:00:09.999991', '2017-01-01 12:00:09.999992', '2017-01-01 12:00:09.999993', '2017-01-01 12:00:09.999994', '2017-01-01 12:00:09.999995', '2017-01-01 12:00:09.999996', '2017-01-01 12:00:09.999997', '2017-01-01 12:00:09.999998', '2017-01-01 12:00:09.999999', '2017-01-01 12:00:10'], dtype='datetime64[ns]', length=10000001, freq='U') DatetimeIndex(['2017-01-02', '2017-01-09', '2017-01-16', '2017-01-23', '2017-01-30'], dtype='datetime64[ns]', freq='W-MON') DatetimeIndex(['2017-01-09', '2017-02-13', '2017-03-13', '2017-04-10'], dtype='datetime64[ns]', freq='WOM-2MON')
# pd.date_range()-日期范围:频率(2) print(pd.date_range('2017','2018', freq = 'M')) print(pd.date_range('2017','2020', freq = 'Q-DEC')) print(pd.date_range('2017','2020', freq = 'A-DEC')) print('------') # M:每月最后一个日历日 # Q-月:指定月为季度末,每个季度末最后一月的最后一个日历日 # A-月:每年指定月份的最后一个日历日 # 月缩写:JAN/FEB/MAR/APR/MAY/JUN/JUL/AUG/SEP/OCT/NOV/DEC # 所以Q-月只有三种情况:1-4-7-10,2-5-8-11,3-6-9-12 print(pd.date_range('2017','2018', freq = 'BM')) print(pd.date_range('2017','2020', freq = 'BQ-DEC')) print(pd.date_range('2017','2020', freq = 'BA-DEC')) print('------') # BM:每月最后一个工作日 # BQ-月:指定月为季度末,每个季度末最后一月的最后一个工作日 # BA-月:每年指定月份的最后一个工作日 print(pd.date_range('2017','2018', freq = 'MS')) print(pd.date_range('2017','2020', freq = 'QS-DEC')) print(pd.date_range('2017','2020', freq = 'AS-DEC')) print('------') # M:每月第一个日历日 # Q-月:指定月为季度末,每个季度末最后一月的第一个日历日 # A-月:每年指定月份的第一个日历日 print(pd.date_range('2017','2018', freq = 'BMS')) print(pd.date_range('2017','2020', freq = 'BQS-DEC')) print(pd.date_range('2017','2020', freq = 'BAS-DEC')) print('------') # BM:每月第一个工作日 # BQ-月:指定月为季度末,每个季度末最后一月的第一个工作日 # BA-月:每年指定月份的第一个工作日
DatetimeIndex(['2017-01-31', '2017-02-28', '2017-03-31', '2017-04-30', '2017-05-31', '2017-06-30', '2017-07-31', '2017-08-31', '2017-09-30', '2017-10-31', '2017-11-30', '2017-12-31'], dtype='datetime64[ns]', freq='M') DatetimeIndex(['2017-03-31', '2017-06-30', '2017-09-30', '2017-12-31', '2018-03-31', '2018-06-30', '2018-09-30', '2018-12-31', '2019-03-31', '2019-06-30', '2019-09-30', '2019-12-31'], dtype='datetime64[ns]', freq='Q-DEC') DatetimeIndex(['2017-12-31', '2018-12-31', '2019-12-31'], dtype='datetime64[ns]', freq='A-DEC') ------ DatetimeIndex(['2017-01-31', '2017-02-28', '2017-03-31', '2017-04-28', '2017-05-31', '2017-06-30', '2017-07-31', '2017-08-31', '2017-09-29', '2017-10-31', '2017-11-30', '2017-12-29'], dtype='datetime64[ns]', freq='BM') DatetimeIndex(['2017-03-31', '2017-06-30', '2017-09-29', '2017-12-29', '2018-03-30', '2018-06-29', '2018-09-28', '2018-12-31', '2019-03-29', '2019-06-28', '2019-09-30', '2019-12-31'], dtype='datetime64[ns]', freq='BQ-DEC') DatetimeIndex(['2017-12-29', '2018-12-31', '2019-12-31'], dtype='datetime64[ns]', freq='BA-DEC') ------ DatetimeIndex(['2017-01-01', '2017-02-01', '2017-03-01', '2017-04-01', '2017-05-01', '2017-06-01', '2017-07-01', '2017-08-01', '2017-09-01', '2017-10-01', '2017-11-01', '2017-12-01', '2018-01-01'], dtype='datetime64[ns]', freq='MS') DatetimeIndex(['2017-03-01', '2017-06-01', '2017-09-01', '2017-12-01', '2018-03-01', '2018-06-01', '2018-09-01', '2018-12-01', '2019-03-01', '2019-06-01', '2019-09-01', '2019-12-01'], dtype='datetime64[ns]', freq='QS-DEC') DatetimeIndex(['2017-12-01', '2018-12-01', '2019-12-01'], dtype='datetime64[ns]', freq='AS-DEC') ------ DatetimeIndex(['2017-01-02', '2017-02-01', '2017-03-01', '2017-04-03', '2017-05-01', '2017-06-01', '2017-07-03', '2017-08-01', '2017-09-01', '2017-10-02', '2017-11-01', '2017-12-01', '2018-01-01'], dtype='datetime64[ns]', freq='BMS') DatetimeIndex(['2017-03-01', '2017-06-01', '2017-09-01', '2017-12-01', '2018-03-01', '2018-06-01', '2018-09-03', '2018-12-03', '2019-03-01', '2019-06-03', '2019-09-02', '2019-12-02'], dtype='datetime64[ns]', freq='BQS-DEC') DatetimeIndex(['2017-12-01', '2018-12-03', '2019-12-02'], dtype='datetime64[ns]', freq='BAS-DEC') ------
# pd.date_range()-日期范围:复合频率
print(pd.date_range('2017/1/1','2017/2/1', freq = '7D')) # 7天
print(pd.date_range('2017/1/1','2017/1/2', freq = '2h30min')) # 2小时30分钟
print(pd.date_range('2017','2018', freq = '2M')) # 2月,每月最后一个日历日
DatetimeIndex(['2017-01-01', '2017-01-08', '2017-01-15', '2017-01-22',
'2017-01-29'],
dtype='datetime64[ns]', freq='7D')
DatetimeIndex(['2017-01-01 00:00:00', '2017-01-01 02:30:00',
'2017-01-01 05:00:00', '2017-01-01 07:30:00',
'2017-01-01 10:00:00', '2017-01-01 12:30:00',
'2017-01-01 15:00:00', '2017-01-01 17:30:00',
'2017-01-01 20:00:00', '2017-01-01 22:30:00'],
dtype='datetime64[ns]', freq='150T')
DatetimeIndex(['2017-01-31', '2017-03-31', '2017-05-31', '2017-07-31',
'2017-09-30', '2017-11-30'],
dtype='datetime64[ns]', freq='2M')
# asfreq:时期频率转换
ts = pd.Series(np.random.rand(4),
index = pd.date_range('20170101','20170104'))
print(ts)
print(ts.asfreq('4H',method = 'ffill'))
# 改变频率,这里是D改为4H
# method:插值模式,None不插值,ffill用之前值填充,bfill用之后值填充
2017-01-01 0.873532 2017-01-02 0.460083 2017-01-03 0.488898 2017-01-04 0.705048 Freq: D, dtype: float64 2017-01-01 00:00:00 0.873532 2017-01-01 04:00:00 0.873532 2017-01-01 08:00:00 0.873532 2017-01-01 12:00:00 0.873532 2017-01-01 16:00:00 0.873532 2017-01-01 20:00:00 0.873532 2017-01-02 00:00:00 0.460083 2017-01-02 04:00:00 0.460083 2017-01-02 08:00:00 0.460083 2017-01-02 12:00:00 0.460083 2017-01-02 16:00:00 0.460083 2017-01-02 20:00:00 0.460083 2017-01-03 00:00:00 0.488898 2017-01-03 04:00:00 0.488898 2017-01-03 08:00:00 0.488898 2017-01-03 12:00:00 0.488898 2017-01-03 16:00:00 0.488898 2017-01-03 20:00:00 0.488898 2017-01-04 00:00:00 0.705048 Freq: 4H, dtype: float64
# pd.date_range()-日期范围:超前/滞后数据 ts = pd.Series(np.random.rand(4), index = pd.date_range('20170101','20170104')) print(ts) print(ts.shift(2)) print(ts.shift(-2)) print('------') # 正数:数值后移(滞后);负数:数值前移(超前) per = ts/ts.shift(1) - 1 print(per) print('------') # 计算变化百分比,这里计算:该时间戳与上一个时间戳相比,变化百分比 print(ts.shift(2, freq = 'D')) print(ts.shift(2, freq = 'T')) # 加上freq参数:对时间戳进行位移,而不是对数值进行位移
2017-01-01 0.285819 2017-01-02 0.334049 2017-01-03 0.426760 2017-01-04 0.262523 Freq: D, dtype: float64 2017-01-01 NaN 2017-01-02 NaN 2017-01-03 0.285819 2017-01-04 0.334049 Freq: D, dtype: float64 2017-01-01 0.426760 2017-01-02 0.262523 2017-01-03 NaN 2017-01-04 NaN Freq: D, dtype: float64 ------ 2017-01-01 NaN 2017-01-02 0.168743 2017-01-03 0.277534 2017-01-04 -0.384847 Freq: D, dtype: float64 ------ 2017-01-03 0.285819 2017-01-04 0.334049 2017-01-05 0.426760 2017-01-06 0.262523 Freq: D, dtype: float64 2017-01-01 00:02:00 0.285819 2017-01-02 00:02:00 0.334049 2017-01-03 00:02:00 0.426760 2017-01-04 00:02:00 0.262523 Freq: D, dtype: float64
timeIndex = pd.date_range('2017-01-01','2017-01-05') print(timeIndex) ses = pd.Series(np.random.rand(len(timeIndex)),index=timeIndex) print(ses) print('------') timeIndex = pd.date_range('2017-01-01','2017-11-01',freq='3M') ses = pd.Series(np.random.rand(len(timeIndex)),index=timeIndex) print(ses) print('------') timeIndex = pd.date_range('2017-12-01',periods=4,freq='10T') ses = pd.DataFrame(np.random.rand(4,4),index=timeIndex,columns = ['value1','value2','value3','value4']) print(ses) print('------') # ts1 = pd.Series(np.random.rand(5), # index = pd.date_range('20170101',periods = 5)) # ts2 = pd.Series(np.random.rand(4), # index = pd.date_range('2017','2018',freq = '3M')) # ts3 = pd.DataFrame(np.random.rand(4,4), # index = pd.date_range('20171201',periods = 4, freq = '10T'), # columns = ['value1','value2','value3','value4']) # print('时间序列1:\n',ts1,'\n------') # print('时间序列2:\n',ts2,'\n------') # print('时间序列3:\n',ts3,'\n------')
DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04', '2017-01-05'], dtype='datetime64[ns]', freq='D') 2017-01-01 0.828788 2017-01-02 0.440422 2017-01-03 0.345140 2017-01-04 0.773083 2017-01-05 0.190301 Freq: D, dtype: float64 ------ 2017-01-31 0.202640 2017-04-30 0.381253 2017-07-31 0.782786 2017-10-31 0.212356 Freq: 3M, dtype: float64 ------ value1 value2 value3 value4 2017-12-01 00:00:00 0.695615 0.694024 0.448662 0.684174 2017-12-01 00:10:00 0.084197 0.577292 0.481037 0.595848 2017-12-01 00:20:00 0.329139 0.478482 0.448594 0.971261 2017-12-01 00:30:00 0.447255 0.483500 0.572927 0.295272 ------
ts1 = pd.Series(np.random.rand(5),index=pd.date_range('2017-05-01',freq='10T',periods=5))
print(ts1)
ts2 = ts1.asfreq(freq='5T',method = 'ffill')
print(ts2)
2017-05-01 00:00:00 0.377864 2017-05-01 00:10:00 0.538821 2017-05-01 00:20:00 0.439886 2017-05-01 00:30:00 0.576316 2017-05-01 00:40:00 0.566581 Freq: 10T, dtype: float64 2017-05-01 00:00:00 0.377864 2017-05-01 00:05:00 0.377864 2017-05-01 00:10:00 0.538821 2017-05-01 00:15:00 0.538821 2017-05-01 00:20:00 0.439886 2017-05-01 00:25:00 0.439886 2017-05-01 00:30:00 0.576316 2017-05-01 00:35:00 0.576316 2017-05-01 00:40:00 0.566581 Freq: 5T, dtype: float64
'''
【课程2.11】 Pandas时期:Period
核心:pd.Period()
'''
# pd.Period()创建时期
p = pd.Period('2017', freq = 'M')
print(p, type(p))
# 生成一个以2017-01开始,月为频率的时间构造器
# pd.Period()参数:一个时间戳 + freq 参数 → freq 用于指明该 period 的长度,时间戳则说明该 period 在时间轴上的位置
print(p + 1)
print(p - 2)
print(pd.Period('2012', freq = 'A-DEC') - 1)
# 通过加减整数,将周期整体移动
# 这里是按照 月、年 移动
2017-01 <class 'pandas._libs.tslibs.period.Period'>
2017-02
2016-11
2011
# pd.period_range()创建时期范围
prng = pd.period_range('1/1/2011', '1/1/2012', freq='M')
print(prng,type(prng))
print(prng[0],type(prng[0]))
# 数据格式为PeriodIndex,单个数值为Period
ts = pd.Series(np.random.rand(len(prng)), index = prng)
print(ts,type(ts))
print(ts.index)
# 时间序列
# Period('2011', freq = 'A-DEC')可以看成多个时间期的时间段中的游标
# Timestamp表示一个时间戳,是一个时间截面;Period是一个时期,是一个时间段!!但两者作为index时区别不大
PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05', '2011-06', '2011-07', '2011-08', '2011-09', '2011-10', '2011-11', '2011-12', '2012-01'], dtype='period[M]', freq='M') <class 'pandas.core.indexes.period.PeriodIndex'> 2011-01 <class 'pandas._libs.tslibs.period.Period'> 2011-01 0.028326 2011-02 0.384722 2011-03 0.603937 2011-04 0.065722 2011-05 0.160951 2011-06 0.077407 2011-07 0.968539 2011-08 0.642216 2011-09 0.646882 2011-10 0.112556 2011-11 0.696104 2011-12 0.396133 2012-01 0.451162 Freq: M, dtype: float64 <class 'pandas.core.series.Series'> PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05', '2011-06', '2011-07', '2011-08', '2011-09', '2011-10', '2011-11', '2011-12', '2012-01'], dtype='period[M]', freq='M')
# asfreq:频率转换
p = pd.Period('2017','A-DEC')
print(p)
print(p.asfreq('M', how = 'start')) # 也可写 how = 's'
print(p.asfreq('D', how = 'end')) # 也可写 how = 'e'
# 通过.asfreq(freq, method=None, how=None)方法转换成别的频率
prng = pd.period_range('2017','2018',freq = 'M')
ts1 = pd.Series(np.random.rand(len(prng)), index = prng)
ts2 = pd.Series(np.random.rand(len(prng)), index = prng.asfreq('D', how = 'start'))
print(ts1.head(),len(ts1))
print(ts2.head(),len(ts2))
# asfreq也可以转换TIMESeries的index
2017
2017-01
2017-12-31
2017-01 0.946116
2017-02 0.847892
2017-03 0.544775
2017-04 0.542203
2017-05 0.872801
Freq: M, dtype: float64 13
2017-01-01 0.253840
2017-02-01 0.672300
2017-03-01 0.814996
2017-04-01 0.540234
2017-05-01 0.178666
Freq: D, dtype: float64 13
# 时间戳与时期之间的转换:pd.to_period()、pd.to_timestamp()
rng = pd.date_range('2017/1/1', periods = 10, freq = 'M')
prng = pd.period_range('2017','2018', freq = 'M')
ts1 = pd.Series(np.random.rand(len(rng)), index = rng)
print(ts1.head())
print(ts1.to_period().head())
# 每月最后一日,转化为每月
ts2 = pd.Series(np.random.rand(len(prng)), index = prng)
print(ts2.head())
print(ts2.to_timestamp().head())
# 每月,转化为每月第一天
2017-01-31 0.455344 2017-02-28 0.178886 2017-03-31 0.528955 2017-04-30 0.822179 2017-05-31 0.143045 Freq: M, dtype: float64 2017-01 0.455344 2017-02 0.178886 2017-03 0.528955 2017-04 0.822179 2017-05 0.143045 Freq: M, dtype: float64 2017-01 0.817136 2017-02 0.641594 2017-03 0.437224 2017-04 0.350448 2017-05 0.020363 Freq: M, dtype: float64 2017-01-01 0.817136 2017-02-01 0.641594 2017-03-01 0.437224 2017-04-01 0.350448 2017-05-01 0.020363 Freq: MS, dtype: float64
pg = pd.period_range('2017',freq='M',periods=5)
ts1 = pd.Series(np.random.rand(len(pg)),index=pg)
print(ts1)
print('-------')
ts2 = pd.Series(np.random.rand(5),index=pd.date_range('2017-01-01',periods=5,freq='2H'))
print(ts2)
2017-01 0.559058
2017-02 0.807918
2017-03 0.260336
2017-04 0.602178
2017-05 0.564539
Freq: M, dtype: float64
-------
2017-01-01 00:00:00 0.807539
2017-01-01 02:00:00 0.300682
2017-01-01 04:00:00 0.766264
2017-01-01 06:00:00 0.270506
2017-01-01 08:00:00 0.790877
Freq: 2H, dtype: float64
'''
【课程2.12】 时间序列 - 索引及切片
TimeSeries是Series的一个子类,所以Series索引及数据选取方面的方法基本一样
同时TimeSeries通过时间序列有更便捷的方法做索引和切片
'''
# 索引 from datetime import datetime rng = pd.date_range('2017/1','2017/3') ts = pd.Series(np.random.rand(len(rng)), index = rng) print(ts.head()) print(ts[0]) print(ts[:2]) print('-----') # 基本下标位置索引 print(ts['2017/1/2']) print(ts['20170103']) print(ts['1/10/2017']) print(ts[datetime(2017,1,20)]) print('-----') # 时间序列标签索引,支持各种时间字符串,以及datetime.datetime # 时间序列由于按照时间先后排序,故不用考虑顺序问题 # 索引方法同样适用于Dataframe
2017-01-01 0.100470 2017-01-02 0.623214 2017-01-03 0.794954 2017-01-04 0.824664 2017-01-05 0.685313 Freq: D, dtype: float64 0.10047036776511242 2017-01-01 0.100470 2017-01-02 0.623214 Freq: D, dtype: float64 ----- 0.6232141996759237 0.7949537559498884 0.37200616424619315 0.6649437404507591 -----
# 切片
rng = pd.date_range('2017/1','2017/3',freq = '12H')
ts = pd.Series(np.random.rand(len(rng)), index = rng)
print(ts['2017/1/5':'2017/1/10'])
print('-----')
# 和Series按照index索引原理一样,也是末端包含
print(ts['2017/2'].head())
# 传入月,直接得到一个切片
2017-01-05 00:00:00 0.663646 2017-01-05 12:00:00 0.488469 2017-01-06 00:00:00 0.434275 2017-01-06 12:00:00 0.791003 2017-01-07 00:00:00 0.255789 2017-01-07 12:00:00 0.496903 2017-01-08 00:00:00 0.182459 2017-01-08 12:00:00 0.813300 2017-01-09 00:00:00 0.426140 2017-01-09 12:00:00 0.880206 2017-01-10 00:00:00 0.151578 2017-01-10 12:00:00 0.372077 Freq: 12H, dtype: float64 ----- 2017-02-01 00:00:00 0.708237 2017-02-01 12:00:00 0.118858 2017-02-02 00:00:00 0.131926 2017-02-02 12:00:00 0.596561 2017-02-03 00:00:00 0.550204 Freq: 12H, dtype: float64
# 重复索引的时间序列 dates = pd.DatetimeIndex(['1/1/2015','1/2/2015','1/3/2015','1/4/2015','1/1/2015','1/2/2015']) ts = pd.Series(np.random.rand(6), index = dates) print(ts) print(ts.is_unique,ts.index.is_unique) print('-----') # index有重复,is_unique检查 → values唯一,index不唯一 print(ts['20150101'],type(ts['20150101'])) print(ts['20150104'],type(ts['20150104'])) print('-----') # index有重复的将返回多个值 print(ts.groupby(level = 0).mean()) # 通过groupby做分组,重复的值这里用平均值处理
2015-01-01 0.213263 2015-01-02 0.050361 2015-01-03 0.826798 2015-01-04 0.564105 2015-01-01 0.155024 2015-01-02 0.110511 dtype: float64 True False ----- 2015-01-01 0.213263 2015-01-01 0.155024 dtype: float64 <class 'pandas.core.series.Series'> 2015-01-04 0.564105 dtype: float64 <class 'pandas.core.series.Series'> ----- 2015-01-01 0.184143 2015-01-02 0.080436 2015-01-03 0.826798 2015-01-04 0.564105 dtype: float64
ts1 = pd.DataFrame(np.random.rand(10,3),index=pd.date_range('2017-12-1',freq='12H',periods=10),columns=['value1','value2','value3'])
print(ts1)
print('------')
print(ts1.head(4))
print('------')
print(ts1.loc['2017-12-4 12:00'])
print('-----')
print(ts1.loc['2017-12-04':'2017-12-05'])
# print(ts1['2017-12-04':'2017-12-05'])
value1 value2 value3 2017-12-01 00:00:00 0.394104 0.271736 0.937013 2017-12-01 12:00:00 0.868487 0.764951 0.483182 2017-12-02 00:00:00 0.746716 0.456714 0.411338 2017-12-02 12:00:00 0.767235 0.892351 0.676085 2017-12-03 00:00:00 0.629204 0.947634 0.067067 2017-12-03 12:00:00 0.653736 0.019379 0.478875 2017-12-04 00:00:00 0.463106 0.134024 0.353138 2017-12-04 12:00:00 0.439842 0.043598 0.934566 2017-12-05 00:00:00 0.338451 0.905158 0.768588 2017-12-05 12:00:00 0.753032 0.066642 0.021436 ------ value1 value2 value3 2017-12-01 00:00:00 0.394104 0.271736 0.937013 2017-12-01 12:00:00 0.868487 0.764951 0.483182 2017-12-02 00:00:00 0.746716 0.456714 0.411338 2017-12-02 12:00:00 0.767235 0.892351 0.676085 ------ value1 0.439842 value2 0.043598 value3 0.934566 Name: 2017-12-04 12:00:00, dtype: float64 ----- value1 value2 value3 2017-12-04 00:00:00 0.463106 0.134024 0.353138 2017-12-04 12:00:00 0.439842 0.043598 0.934566 2017-12-05 00:00:00 0.338451 0.905158 0.768588 2017-12-05 12:00:00 0.753032 0.066642 0.021436
'''
【课程2.13】 时间序列 - 重采样
将时间序列从一个频率转换为另一个频率的过程,且会有数据的结合
降采样:高频数据 → 低频数据,eg.以天为频率的数据转为以月为频率的数据
升采样:低频数据 → 高频数据,eg.以年为频率的数据转为以月为频率的数据
'''
# 重采样:.resample() # 创建一个以天为频率的TimeSeries,重采样为按2天为频率 rng = pd.date_range('20170101', periods = 12) ts = pd.Series(np.arange(12), index = rng) print(ts) ts_re = ts.resample('5D') ts_re2 = ts.resample('5D').sum() print(ts_re, type(ts_re)) print(ts_re2, type(ts_re2)) print('-----') # ts.resample('5D'):得到一个重采样构建器,频率改为5天 # ts.resample('5D').sum():得到一个新的聚合后的Series,聚合方式为求和 # freq:重采样频率 → ts.resample('5D') # .sum():聚合方法 print(ts.resample('5D').mean(),'→ 求平均值\n') print(ts.resample('5D').max(),'→ 求最大值\n') print(ts.resample('5D').min(),'→ 求最小值\n') print(ts.resample('5D').median(),'→ 求中值\n') print(ts.resample('5D').first(),'→ 返回第一个值\n') print(ts.resample('5D').last(),'→ 返回最后一个值\n') print(ts.resample('5D').ohlc(),'→ OHLC重采样\n') # OHLC:金融领域的时间序列聚合方式 → open开盘、high最大值、low最小值、close收盘
2017-01-01 0 2017-01-02 1 2017-01-03 2 2017-01-04 3 2017-01-05 4 2017-01-06 5 2017-01-07 6 2017-01-08 7 2017-01-09 8 2017-01-10 9 2017-01-11 10 2017-01-12 11 Freq: D, dtype: int32 DatetimeIndexResampler [freq=<5 * Days>, axis=0, closed=left, label=left, convention=start, base=0] <class 'pandas.core.resample.DatetimeIndexResampler'> 2017-01-01 10 2017-01-06 35 2017-01-11 21 Freq: 5D, dtype: int32 <class 'pandas.core.series.Series'> ----- 2017-01-01 2.0 2017-01-06 7.0 2017-01-11 10.5 Freq: 5D, dtype: float64 → 求平均值 2017-01-01 4 2017-01-06 9 2017-01-11 11 Freq: 5D, dtype: int32 → 求最大值 2017-01-01 0 2017-01-06 5 2017-01-11 10 Freq: 5D, dtype: int32 → 求最小值 2017-01-01 2.0 2017-01-06 7.0 2017-01-11 10.5 Freq: 5D, dtype: float64 → 求中值 2017-01-01 0 2017-01-06 5 2017-01-11 10 Freq: 5D, dtype: int32 → 返回第一个值 2017-01-01 4 2017-01-06 9 2017-01-11 11 Freq: 5D, dtype: int32 → 返回最后一个值 open high low close 2017-01-01 0 4 0 4 2017-01-06 5 9 5 9 2017-01-11 10 11 10 11 → OHLC重采样
# 降采样 多数据编程少数据 rng = pd.date_range('20170101', periods = 12) ts = pd.Series(np.arange(1,13), index = rng) print(ts) print(ts.resample('5D').sum(),'→ 默认\n') print(ts.resample('5D', closed = 'left').sum(),'→ left\n') print(ts.resample('5D', closed = 'right').sum(),'→ right\n') print('-----') # closed:各时间段哪一端是闭合(即包含)的,默认 左闭右闭 # 详解:这里values为0-11,按照5D重采样 → [1,2,3,4,5],[6,7,8,9,10],[11,12] # left指定间隔左边为结束 → [1,2,3,4,5],[6,7,8,9,10],[11,12] # right指定间隔右边为结束 → [1],[2,3,4,5,6],[7,8,9,10,11],[12] print(ts.resample('5D', label = 'left').sum(),'→ leftlabel\n') print(ts.resample('5D', label = 'right').sum(),'→ rightlabel\n') # label:聚合值的index,默认为取左 # 值采样认为默认(这里closed默认)
2017-01-01 1 2017-01-02 2 2017-01-03 3 2017-01-04 4 2017-01-05 5 2017-01-06 6 2017-01-07 7 2017-01-08 8 2017-01-09 9 2017-01-10 10 2017-01-11 11 2017-01-12 12 Freq: D, dtype: int32 2017-01-01 15 2017-01-06 40 2017-01-11 23 Freq: 5D, dtype: int32 → 默认 2017-01-01 15 2017-01-06 40 2017-01-11 23 Freq: 5D, dtype: int32 → left 2016-12-27 1 2017-01-01 20 2017-01-06 45 2017-01-11 12 Freq: 5D, dtype: int32 → right ----- 2017-01-01 15 2017-01-06 40 2017-01-11 23 Freq: 5D, dtype: int32 → leftlabel 2017-01-06 15 2017-01-11 40 2017-01-16 23 Freq: 5D, dtype: int32 → rightlabel
# 升采样及插值 少数据变成多数据
rng = pd.date_range('2017/1/1 0:0:0', periods = 5, freq = 'H')
ts = pd.DataFrame(np.arange(15).reshape(5,3),
index = rng,
columns = ['a','b','c'])
print(ts)
print(ts.resample('15T').asfreq())
print(ts.resample('15T').ffill())
print(ts.resample('15T').bfill())
# 低频转高频,主要是如何插值
# .asfreq():不做填充,返回Nan
# .ffill():向上填充
# .bfill():向下填充
a b c 2017-01-01 00:00:00 0 1 2 2017-01-01 01:00:00 3 4 5 2017-01-01 02:00:00 6 7 8 2017-01-01 03:00:00 9 10 11 2017-01-01 04:00:00 12 13 14 a b c 2017-01-01 00:00:00 0.0 1.0 2.0 2017-01-01 00:15:00 NaN NaN NaN 2017-01-01 00:30:00 NaN NaN NaN 2017-01-01 00:45:00 NaN NaN NaN 2017-01-01 01:00:00 3.0 4.0 5.0 2017-01-01 01:15:00 NaN NaN NaN 2017-01-01 01:30:00 NaN NaN NaN 2017-01-01 01:45:00 NaN NaN NaN 2017-01-01 02:00:00 6.0 7.0 8.0 2017-01-01 02:15:00 NaN NaN NaN 2017-01-01 02:30:00 NaN NaN NaN 2017-01-01 02:45:00 NaN NaN NaN 2017-01-01 03:00:00 9.0 10.0 11.0 2017-01-01 03:15:00 NaN NaN NaN 2017-01-01 03:30:00 NaN NaN NaN 2017-01-01 03:45:00 NaN NaN NaN 2017-01-01 04:00:00 12.0 13.0 14.0 a b c 2017-01-01 00:00:00 0 1 2 2017-01-01 00:15:00 0 1 2 2017-01-01 00:30:00 0 1 2 2017-01-01 00:45:00 0 1 2 2017-01-01 01:00:00 3 4 5 2017-01-01 01:15:00 3 4 5 2017-01-01 01:30:00 3 4 5 2017-01-01 01:45:00 3 4 5 2017-01-01 02:00:00 6 7 8 2017-01-01 02:15:00 6 7 8 2017-01-01 02:30:00 6 7 8 2017-01-01 02:45:00 6 7 8 2017-01-01 03:00:00 9 10 11 2017-01-01 03:15:00 9 10 11 2017-01-01 03:30:00 9 10 11 2017-01-01 03:45:00 9 10 11 2017-01-01 04:00:00 12 13 14 a b c 2017-01-01 00:00:00 0 1 2 2017-01-01 00:15:00 3 4 5 2017-01-01 00:30:00 3 4 5 2017-01-01 00:45:00 3 4 5 2017-01-01 01:00:00 3 4 5 2017-01-01 01:15:00 6 7 8 2017-01-01 01:30:00 6 7 8 2017-01-01 01:45:00 6 7 8 2017-01-01 02:00:00 6 7 8 2017-01-01 02:15:00 9 10 11 2017-01-01 02:30:00 9 10 11 2017-01-01 02:45:00 9 10 11 2017-01-01 03:00:00 9 10 11 2017-01-01 03:15:00 12 13 14 2017-01-01 03:30:00 12 13 14 2017-01-01 03:45:00 12 13 14 2017-01-01 04:00:00 12 13 14
# 时期重采样 - Period
# prng = pd.period_range('2016','2017',freq = 'M')
prng = pd.date_range('2016','2017',freq = 'M')
ts = pd.Series(np.arange(len(prng)), index = prng)
print(ts)
print(ts.resample('3M').sum()) # 降采样
print(ts.resample('15D').ffill()) # 升采样
2016-01-31 0 2016-02-29 1 2016-03-31 2 2016-04-30 3 2016-05-31 4 2016-06-30 5 2016-07-31 6 2016-08-31 7 2016-09-30 8 2016-10-31 9 2016-11-30 10 2016-12-31 11 Freq: M, dtype: int32 2016-01-31 0 2016-04-30 6 2016-07-31 15 2016-10-31 24 2017-01-31 21 Freq: 3M, dtype: int32 2016-01-31 0 2016-02-15 0 2016-03-01 1 2016-03-16 1 2016-03-31 2 2016-04-15 2 2016-04-30 3 2016-05-15 3 2016-05-30 3 2016-06-14 4 2016-06-29 4 2016-07-14 5 2016-07-29 5 2016-08-13 6 2016-08-28 6 2016-09-12 7 2016-09-27 7 2016-10-12 8 2016-10-27 8 2016-11-11 9 2016-11-26 9 2016-12-11 10 2016-12-26 10 Freq: 15D, dtype: int32
ts1 = pd.Series(np.random.rand(10),index=pd.date_range('2017-01-01',periods=10))
print(ts1)
print(ts1.resample('3D').mean())
print(ts1.resample('12H').ffill())
2017-01-01 0.775425 2017-01-02 0.457071 2017-01-03 0.689568 2017-01-04 0.589763 2017-01-05 0.699118 2017-01-06 0.562188 2017-01-07 0.942953 2017-01-08 0.725820 2017-01-09 0.562741 2017-01-10 0.486991 Freq: D, dtype: float64 2017-01-01 0.640688 2017-01-04 0.617023 2017-01-07 0.743838 2017-01-10 0.486991 Freq: 3D, dtype: float64 2017-01-01 00:00:00 0.775425 2017-01-01 12:00:00 0.775425 2017-01-02 00:00:00 0.457071 2017-01-02 12:00:00 0.457071 2017-01-03 00:00:00 0.689568 2017-01-03 12:00:00 0.689568 2017-01-04 00:00:00 0.589763 2017-01-04 12:00:00 0.589763 2017-01-05 00:00:00 0.699118 2017-01-05 12:00:00 0.699118 2017-01-06 00:00:00 0.562188 2017-01-06 12:00:00 0.562188 2017-01-07 00:00:00 0.942953 2017-01-07 12:00:00 0.942953 2017-01-08 00:00:00 0.725820 2017-01-08 12:00:00 0.725820 2017-01-09 00:00:00 0.562741 2017-01-09 12:00:00 0.562741 2017-01-10 00:00:00 0.486991 Freq: 12H, dtype: float64
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。