当前位置:   article > 正文

Kafka对接采集日志Flum的集群搭建与部署_日志 flu

日志 flu

Kafka简介

消息队列

  • 消息队列——用于存放消息的组件
  • 程序员可以将消息放入到队列中,也可以从消息队列中获取消息
  • 很多时候消息队列不是一个永久性的存储,是作为临时存储存在的(设定一个期限:设置消息在MQ中保存10天)
  • 消息队列中间件:消息队列的组件,例如:Kafka、Active MQ、RabbitMQ、RocketMQ、ZeroMQ

Kafka的应用场景

  • 异步处理

    • 可以将一些比较耗时的操作放在其他系统中,通过消息队列将需要进行处理的消息进行存储,其他系统可以消费消息队列中的数据
    • 比较常见的:发送短信验证码、发送邮件
  • 系统解耦

    • 原先一个微服务是通过接口(HTTP)调用另一个微服务,这时候耦合很严重,只要接口发生变化就会导致系统不可用
    • 使用消息队列可以将系统进行解耦合,现在第一个微服务可以将消息放入到消息队列中,另一个微服务可以从消息队列中把消息取出来进行处理。进行系统解耦
  • 流量削峰

    • 因为消息队列是低延迟、高可靠、高吞吐的,可以应对大量并发
  • 日志处理

    • 可以使用消息队列作为临时存储,或者一种通信管道

消息队列的两种模型

  • 生产者、消费者模型
    • 生产者负责将消息生产到MQ中
    • 消费者负责从MQ中获取消息
    • 生产者和消费者是解耦的,可能是生产者一个程序、消费者是另外一个程序
  • 消息队列的模式
    • 点对点:一个消费者消费一个消息
    • 发布订阅:多个消费者可以消费一个消息

Kafka中的重要概念

  • broker
    • Kafka服务器进程,生产者、消费者都要连接broker
    • 一个集群由多个broker组成,功能实现Kafka集群的负载均衡、容错
  • producer:生产者
  • consumer:消费者
  • topic:主题,一个Kafka集群中,可以包含多个topic。一个topic可以包含多个分区
    • 是一个逻辑结构,生产、消费消息都需要指定topic
  • partition:Kafka集群的分布式就是由分区来实现的。一个topic中的消息可以分布在topic中的不同partition中
  • replica:副本,实现Kafkaf集群的容错,实现partition的容错。一个topic至少应该包含大于1个的副本
  • consumer group:消费者组,一个消费者组中的消费者可以共同消费topic中的分区数据。每一个消费者组都一个唯一的名字。配置group.id一样的消费者是属于同一个组中
  • offset:偏移量。相对消费者、partition来说,可以通过offset来拉取数据
  • group.id:消费者组的概念,可以在一个消费组中包含多个消费者。如果若干个消费者的group.id是一样的,表示它们就在一个组中,一个组中的消费者是共同消费Kafka中topic的数据。
  • Kafka是一种拉消息模式的消息队列,在消费者中会有一个offset,表示从哪条消息开始拉取数据

消费者组

  • 一个消费者组中可以包含多个消费者,共同来消费topic中的数据
  • 一个topic中如果只有一个分区,那么这个分区只能被某个组中的一个消费者消费
  • 有多少个分区,那么就可以被同一个组内的多少个消费者消费

幂等性

  • 生产者消息重复问题

    • Kafka生产者生产消息到partition,如果直接发送消息,kafka会将消息保存到分区中,但Kafka会返回一个ack给生产者,表示当前操作是否成功,是否已经保存了这条消息。如果ack响应的过程失败了,此时生产者会重试,继续发送没有发送成功的消息,Kafka又会保存一条一模一样的消息
  • 在Kafka中可以开启幂等性

    • 当Kafka的生产者生产消息时,会增加一个pid(生产者的唯一编号)和sequence number(针对消息的一个递增序列)
    • 发送消息,会连着pid和sequence number一块发送
    • kafka接收到消息,会将消息和pid、sequence number一并保存下来
    • 如果ack响应失败,生产者重试,再次发送消息时,Kafka会根据pid、sequence number是否需要再保存一条消息
    • 判断条件:生产者发送过来的sequence number 是否小于等于 partition中消息对应的sequence

Kafka集群搭建

前期准备:zookeeper必须搭建完毕

kafka集群部署

  1. 上传并解压安装包

    [lili@hadoop102 software]$ tar -zxvf kafka_2.11-0.11.0.0.tgz -C /opt/module/
    
    • 1
  2. 修改解压后的文件名称

    [lili@hadoop102 software]$ mv kafka_2.11-0.11.0.0/ kafka
    
    • 1
  3. 在/opt/module/kafka目录下创建logs文件夹

    作为kafka运行日志存放的文件

    [lili@hadoop102 kafka]$ mkdir logs
    
    • 1
  4. 修改kafka配置文件

    [lili@hadoop102 kafka]$ vim config/server.properties 
    
    # Licensed to the Apache Software Foundation (ASF) under one or more
    # contributor license agreements.  See the NOTICE file distributed with
    # this work for additional information regarding copyright ownership.
    # The ASF licenses this file to You under the Apache License, Version 2.0
    # (the "License"); you may not use this file except in compliance with
    # the License.  You may obtain a copy of the License at
    #
    #    http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    
    # see kafka.server.KafkaConfig for additional details and defaults
    
    ############################# Server Basics #############################
    
    # The id of the broker. This must be set to a unique integer for each broker.
    #broker唯一编号,不能重复
    broker.id=0
    
    # Switch to enable topic deletion or not, default value is false
    #删除topic功能
    delete.topic.enable=true
    
    ############################# Socket Server Settings #############################
    
    # The address the socket server listens on. It will get the value returned from 
    # java.net.InetAddress.getCanonicalHostName() if not configured.
    #   FORMAT:
    #     listeners = listener_name://host_name:port
    #   EXAMPLE:
    #     listeners = PLAINTEXT://your.host.name:9092
    #listeners=PLAINTEXT://:9092
    
    # Hostname and port the broker will advertise to producers and consumers. If not set, 
    # it uses the value for "listeners" if configured.  Otherwise, it will use the value
    # returned from java.net.InetAddress.getCanonicalHostName().
    #advertised.listeners=PLAINTEXT://your.host.name:9092
    
    # Maps listener names to security protocols, the default is for them to be the same. See the config documentation for more details
    #listener.security.protocol.map=PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL
    
    # The number of threads that the server uses for receiving requests from the network and sending responses to the network
    #处理网路请求的线程数量
    num.network.threads=3
    
    # The number of threads that the server uses for processing requests, which may include disk I/O
    #用来处理磁盘IO的线程数量
    num.io.threads=8
    
    # The send buffer (SO_SNDBUF) used by the socket server
    #Socket(套接字)可以看成是两个网络应用程序进行通信时,各自通信连接中的端点,这是一个逻辑上的
    #概念。它是网络环境中进程间通信的API(应用程序编程接口),也是可以被命名和寻址的通信端点,使
    #用中的每一个套接字都有其类型和一个与之相连进程。通信时其中一个网络应用程序将要传输的一段信
    #息写入它所在主机的 Socket中,该 Socket通过与网络接口卡(NIC)相连的传输介质将这段信息送到另
    #外一台主机的 Socket中,使对方能够接收到这段信息。 Socket是由IP地址和端口结合的,提供向应
    #用层进程传送数据包的机制 [2] 。
    #发送套接字的缓冲区大小
    socket.send.buffer.bytes=102400
    
    # The receive buffer (SO_RCVBUF) used by the socket server
    #接收套接字的缓冲区大小
    socket.receive.buffer.bytes=102400
    
    # The maximum size of a request that the socket server will accept (protection against OOM)
    #请求套接字的缓冲区大小
    socket.request.max.bytes=104857600
    
    
    ############################# Log Basics #############################
    
    # A comma seperated list of directories under which to store log files
    #kafka运行日志存放的路径
    log.dirs=/opt/module/kafka/logs
    
    # The default number of log partitions per topic. More partitions allow greater
    # parallelism for consumption, but this will also result in more files across
    # the brokers.
    #topic在当前broker上的分区个数
    num.partitions=1
    
    # The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
    # This value is recommended to be increased for installations with data dirs located in RAID array.
    #用来恢复和清理data下数据的线程数量
    num.recovery.threads.per.data.dir=1
    
    ############################# Internal Topic Settings  #############################
    # The replication factor for the group metadata internal topics "__consumer_offsets" and "__transaction_state"
    # For anything other than development testing, a value greater than 1 is recommended for to ensure availability such as 3.
    offsets.topic.replication.factor=1
    transaction.state.log.replication.factor=1
    transaction.state.log.min.isr=1
    
    ############################# Log Flush Policy #############################
    
    # Messages are immediately written to the filesystem but by default we only fsync() to sync
    # the OS cache lazily. The following configurations control the flush of data to disk.
    # There are a few important trade-offs here:
    #    1. Durability: Unflushed data may be lost if you are not using replication.
    #    2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
    #    3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to exceessive seeks.
    # The settings below allow one to configure the flush policy to flush data after a period of time or
    # every N messages (or both). This can be done globally and overridden on a per-topic basis.
    
    # The number of messages to accept before forcing a flush of data to disk
    #log.flush.interval.messages=10000
    
    # The maximum amount of time a message can sit in a log before we force a flush
    #log.flush.interval.ms=1000
    
    ############################# Log Retention Policy #############################
    
    # The following configurations control the disposal of log segments. The policy can
    # be set to delete segments after a period of time, or after a given size has accumulated.
    # A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
    # from the end of the log.
    
    # The minimum age of a log file to be eligible for deletion due to age
    #segment文件保留的最长时间,超时将被删除
    log.retention.hours=168
    
    # A size-based retention policy for logs. Segments are pruned from the log as long as the remaining
    # segments don't drop below log.retention.bytes. Functions independently of log.retention.hours.
    #log.retention.bytes=1073741824
    
    # The maximum size of a log segment file. When this size is reached a new log segment will be created.
    log.segment.bytes=1073741824
    
    # The interval at which log segments are checked to see if they can be deleted according
    # to the retention policies
    log.retention.check.interval.ms=300000
    
    ############################# Zookeeper #############################
    
    # Zookeeper connection string (see zookeeper docs for details).
    # This is a comma separated host:port pairs, each corresponding to a zk
    # server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
    # You can also append an optional chroot string to the urls to specify the
    # root directory for all kafka znodes.
    #配置连接Zookeeper集群地址
    zookeeper.connect=hadoop102:2181,hadoop103:2181,hadoop104:2181
    
    # Timeout in ms for connecting to zookeeper
    zookeeper.connection.timeout.ms=6000
    
    
    ############################# Group Coordinator Settings #############################
    
    # The following configuration specifies the time, in milliseconds, that the GroupCoordinator will delay the initial consumer rebalance.
    # The rebalance will be further delayed by the value of group.initial.rebalance.delay.ms as new members join the group, up to a maximum of max.poll.interval.ms.
    # The default value for this is 3 seconds.
    # We override this to 0 here as it makes for a better out-of-the-box experience for development and testing.
    # However, in production environments the default value of 3 seconds is more suitable as this will help to avoid unnecessary, and potentially expensive, rebalances during application startup.
    group.initial.rebalance.delay.ms=0
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
  5. 分发kafka文件夹到三台服务器

    [lili@hadoop102 module]$ xsync kafka/
    
    • 1

    分发之后,分别在其他服务器上修改配置/opt/module/kafka/config/server.properties中的broker.id=1、broker.id=2

  6. 配置环境变量

    分别在三台服务器上配置环境变量

    [lili@hadoop102 module]$ vim /etc/profile.d/env.sh 
    #KAFKA_HOME
    export KAFKA_HOME=/opt/module/kafka
    export PATH=$PATH:$KAFKA_HOME/bin
    [lili@hadoop102 module]$ source /etc/profile.d/env.sh
    
    • 1
    • 2
    • 3
    • 4
    • 5
  7. 启动集群

    [lili@hadoop102 kafka]$ bin/kafka-server-start.sh config/server.properties &
    [lili@hadoop103 kafka]$ bin/kafka-server-start.sh config/server.properties &
    [lili@hadoop104 kafka]$ bin/kafka-server-start.sh config/server.properties &
    
    • 1
    • 2
    • 3

    在打开一个shell窗口连接hadoop102查看系统进程

    [lili@hadoop102 ~]$ xcall.sh jps
    ----------hadoop102----------
    21025 NameNode
    21460 NodeManager
    21142 DataNode
    21543 JobHistoryServer
    25946 Kafka
    20826 QuorumPeerMain
    23707 Application
    30063 Jps
    ----------hadoop103----------
    16547 Kafka
    13589 QuorumPeerMain
    13800 ResourceManager
    15736 Application
    17993 Jps
    13918 NodeManager
    13662 DataNode
    ----------hadoop104----------
    19041 Jps
    14242 DataNode
    14358 SecondaryNameNode
    16840 Kafka
    14447 NodeManager
    14175 QuorumPeerMain
    [lili@hadoop102 ~]$ 
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  8. 关闭集群

    [lili@hadoop102 kafka]$ bin/kafka-server-stop.sh stop
    [lili@hadoop103 kafka]$ bin/kafka-server-stop.sh stop
    [lili@hadoop104 kafka]$ bin/kafka-server-stop.sh stop
    
    • 1
    • 2
    • 3

    关闭集群后查看系统进程

    [lili@hadoop102 ~]$ xcall.sh jps
    ----------hadoop102----------
    21025 NameNode
    21460 NodeManager
    21142 DataNode
    21543 JobHistoryServer
    30135 Jps
    20826 QuorumPeerMain
    23707 Application
    ----------hadoop103----------
    18050 Jps
    13589 QuorumPeerMain
    13800 ResourceManager
    15736 Application
    13918 NodeManager
    13662 DataNode
    ----------hadoop104----------
    14242 DataNode
    14358 SecondaryNameNode
    19102 Jps
    14447 NodeManager
    14175 QuorumPeerMain
    [lili@hadoop102 ~]$ 
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23

kafka启动脚本

  1. 编写脚本

    [lili@hadoop102 bin]$ vim kf.sh
    #!/bin/bash
    case $1 in
    "start"){
            for i in hadoop102 hadoop103 hadoop104
            do
                    echo " --------启动 $i Kafka-------"
                    ssh $i "/opt/module/kafka/bin/kafka-server-start.sh -daemon /opt/module/kafka/config/server.properties "
    #daemon进程又称为守护 进程,是在系统 启动就运行,系统关闭才停止的进程,独立于终端之外,不与客户端交
    #互。一般进程在关闭终端后就停止了,而daemon进程不会停止。
            done
    };;
    "stop"){
            for i in hadoop102 hadoop103 hadoop104
            do
                    echo " --------停止 $i Kafka-------"
                    ssh $i "/opt/module/kafka/bin/kafka-server-stop.sh  stop"
            done
    };;
    esac
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
  2. 增加脚本权限

    [lili@hadoop102 bin]$ chmod 777 kf.sh
    
    • 1
  3. 启动脚本

    [lili@hadoop102 module]$ kf.sh start
    
    • 1
  4. 关闭脚本

    [lili@hadoop102 module]$ kf.sh stop
    
    • 1

Kafka命令行操作

1.查看Kafka Topic列表

[lili@hadoop102 kafka]$ bin/kafka-topics.sh --zookeeper hadoop102:2181 --list
topic_event
topic_start
  • 1
  • 2
  • 3

如果没有出现这两个topic可能的原因

  1. 在kafka启动前应当先启动采集日志flume
  2. 缺乏数据源,查看/tmp/logs/目录下是否有日志数据。
  3. 如果仍然没有解决,尝试自行创建Kafka Topic

2.创建Kafka Topic

进入到/opt/module/kafka/目录下分别创建:启动日志主题、事件日志主题。

  1. 创建启动日志主题

    [lili@hadoop102 kafka]$ bin/kafka-topics.sh --zookeeper hadoop102:2181,hadoop103:2181,hadoop104:2181  --create --replication-factor 1 --partitions 1 --topic topic_start
    
    • 1
  2. 创建事件日志主题

    [lili@hadoop102 kafka]$ bin/kafka-topics.sh --zookeeper hadoop102:2181,hadoop103:2181,hadoop104:2181  --create --replication-factor 1 --partitions 1 --topic topic_event
    
    • 1

3.删除Kafka Topic

  1. 删除启动日志主题

    [lili@hadoop102 kafka]$ bin/kafka-topics.sh --delete --zookeeper hadoop102:2181,hadoop103:2181,hadoop104:2181 --topic topic_start
    
    • 1
  2. 删除事件日志主题

    [lili@hadoop102 kafka]$ bin/kafka-topics.sh --delete --zookeeper hadoop102:2181,hadoop103:2181,hadoop104:2181 --topic topic_event
    
    • 1

4.kafka消费信息

  1. 消费启动日志主题

    [lili@hadoop102 kafka]$ bin/kafka-console-consumer.sh \
    --bootstrap-server hadoop102:9092 --from-beginning --topic topic_start
    
    • 1
    • 2

    –from-beginning:会把主题中以往所有的数据都读取出来。根据业务场景选择是否增加该配置。

  2. 消费事件日志主题

    [lili@hadoop102 kafka]$ bin/kafka-console-consumer.sh \
    --bootstrap-server hadoop102:9092 --from-beginning --topic topic_event
    
    • 1
    • 2

5.查看kafka Topic详情

  1. 查看启动日志主题

    [lili@hadoop102 kafka]$ bin/kafka-topics.sh --zookeeper hadoop102:2181 \
    --describe --topic topic_start
    
    • 1
    • 2
  2. 查看事件日志主题

    [lili@hadoop102 kafka]$ bin/kafka-topics.sh --zookeeper hadoop102:2181 \
    --describe --topic --topic topic_event
    
    • 1
    • 2

6.kafka压力测试

利用kafka自带的官方脚本,对Kafka进行压测。

kafka-producer-perf-test.sh

kafka-consumer-perf-test.sh

  1. Kafka Producer压力测试

    [lili@hadoop102 kafka]$ bin/kafka-producer-perf-test.sh  --topic test --record-size 100 --num-records 100000 --throughput -1 --producer-props bootstrap.servers=hadoop102:9092,hadoop103:9092,hadoop104:9092
    
    • 1

    说明:

    record-size是一条信息有多大,单位是字节。

    num-records是总共发送多少条信息。

    throughput 是每秒多少条信息,设成-1,表示不限流,可测出生产者最大吞吐量。

    打印结果:

    100000 records sent, 27510.316369 records/sec (2.62 MB/sec), 1303.49 ms avg latency, 
    1597.00 ms max latency, 1434 ms 50th, 1569 ms 95th, 1589 ms 99th, 1595 ms 99.9th.
    
    • 1
    • 2

    参数解析:本例中一共写入10w条消息,吞吐量为2.62 MB/sec,每次写入的平均延迟为1597.00毫秒,最大的延迟为1595毫秒。(我的电脑好菜!)

  2. Kafka Consumer压力测试

    [lili@hadoop102 kafka]$ bin/kafka-consumer-perf-test.sh --zookeeper hadoop102:2181 --topic test --fetch-size 10000 --messages 10000000 --threads 1
    
    • 1

    说明:

    –zookeeper 指定zookeeper的链接信息

    –topic 指定topic的名称

    –fetch-size 指定每次fetch的数据的大小

    –messages 总共要消费的消息个数

    注:Consumer的测试,如果这四个指标(IO,CPU,内存,网络)都不能改变,考虑增加分区数来提升性能。

    打印结果:

    start.time, end.time, data.consumed.in.MB, MB.sec, data.consumed.in.nMsg, nMsg.sec
    2021-07-31 07:23:43:903, 2021-07-31 07:23:49:424, 19.0735, 3.4547, 200000, 36225.3215
    
    • 1
    • 2

    开始测试时间,测试结束数据,共消费数据19.0735MB,吞吐量3.4547MB/s,共消费200000条,平均每秒消费36225.3215条。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/凡人多烦事01/article/detail/502232
推荐阅读
相关标签
  

闽ICP备14008679号