赞
踩
A星算法是一种用于解决路径规划问题的算法,它可以用于单机器人和多机器人的情况。下面是一段使用 Python 实现多机器人路径规划的代码示例:
``` import heapq import numpy as np
def a_star(grid, start, goal, robot_starts, robot_goals): def heuristic(position, goal): # 计算启发函数(曼哈顿距离) return np.abs(position[0] - goal[0]) + np.abs(position[1] - goal[1])
- def get_neighbors(position, grid):
- # 获取当前位置的邻居
- row, col = position
- neighbors = []
- if row > 0 and grid[row-1, col] != 1:
- neighbors.append((row-1, col))
- if row < grid.shape[0]-1 and grid[row+1, col] != 1:
- neighbors.append((row+1, col))
- if col > 0 and grid[row, col-1] != 1:
- neighbors.append((row, col-1))
- if col < grid.shape[1]-1 and grid[row, col+1] != 1:
- neighbors.append((row, col+1))
- return neighbors
-
- def reconstruct_path(came_from, current):
- # 通过 came_from 数组重建路径
- path = [current]
- while current in came_from:
- current = came_from[current]
- path.append(current)
- path.reverse()
- return path
-
- robot_num = len(robot_starts)
- closed_set = [set() for i in range(robot_num)]
- came_from = [{} for i in range(robot_num)]
- g_score = [{robot_starts[i]: 0} for i in range(robot_num)]
- f_score = [{robot_starts[i]: heuristic(robot_starts[i], goal)} for i in range(robot_num)]
- heap = [(f_score[i][robot_starts[i]], i, robot_starts[i]) for i in range(robot_num)]
- heapq.heapify(heap)
-
- while heap:
- f, robot_idx, current = heapq.heappop(heap)
- if current == goal:
- return [reconstruct_path(came_from[i], current) for i in range(robot_num)]
-
- closed_set[robot_idx].add(current)
-
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。