赞
踩
参考1
自定义输入矩阵来绘制
根据参考代码,
自定义
代码如下:
# 编程实现有向图连通性的判断 from pylab import mpl mpl.rcParams['font.sans-serif'] = ['SimHei'] mpl.rcParams['axes.unicode_minus'] = False import numpy as np import networkx as nx import matplotlib.pyplot as plt import pylab #定义x三阶矩阵 x = np.array([[1, 0, 0], [1, 1, 0], [1, 1, 1]]) #随机生成x为五阶矩阵 # x = np.random.randint(0, 2, (5, 5)) n = len(x) value_1 = value_2 = sum_1 = sum_2 = sum_3 = sum_4 = y = final = x y = x + x.T # 计算可达矩阵 for i in range(1, n): value_1 = np.matmul(value_1, x) sum_1 = sum_1 + value_1 sum_2 = sum_1 + np.identity(n) reachability_matrix = sum_2 > 0.5 print("此有向图的可达矩阵为:") print(reachability_matrix.astype(int)) final = reachability_matrix + reachability_matrix.T for i in range(1, n): value_2 = np.matmul(value_2, y) sum_3 = sum_3 + value_2 sum_4 = sum_3 + np.identity(n) reachability_matrix_1 = sum_4 > 0.5 # 给出判断结果 if ((reachability_matrix.astype(int) == np.ones((n, n)).astype(int)).all()): print("此有向线图G为强连通图或其为无向连通图") elif ((final.astype(int) == np.ones((n, n)).astype(int)).all()): print("此有向线图G是单向连通图") elif ((reachability_matrix_1.astype(int) == np.ones((n, n)).astype(int)).all()): print("此有向线图G是弱连通图") else: print("此有向图不连通") # 下面展示图形化输出有向图G G = nx.DiGraph() for i in range(0, n): j=i+1 G.add_node(i, desc='p' + str(j)) for p in range(0, n): for q in range(0, n): if x[p, q] == 1: G.add_edges_from([(p, q)], weight='1') edge_labels = dict([((u, v), d['weight']) for u, v, d in G.edges(data=True)]) edge_colors = ['black'] pos = nx.spring_layout(G) node_labels = nx.get_node_attributes(G, 'desc') nx.draw_networkx_labels(G, pos, labels=node_labels) nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels) nx.draw(G, pos, node_size=1500, edge_color=edge_colors, edge_cmap=plt.cm.Reds) plt.title('Directed Graph', fontsize=10) pylab.show()
增大了字体
可以自定义字体大小
# 编程实现有向图连通性的判断 from pylab import mpl mpl.rcParams['font.sans-serif'] = ['SimHei'] mpl.rcParams['axes.unicode_minus'] = False import numpy as np import networkx as nx import matplotlib.pyplot as plt import pylab #定义x三阶矩阵 x = np.array([[1, 0, 0], [1, 1, 0], [1, 1, 1]]) #随机生成x为五阶矩阵 # x = np.random.randint(0, 2, (5, 5)) n = len(x) value_1 = value_2 = sum_1 = sum_2 = sum_3 = sum_4 = y = final = x y = x + x.T # 计算可达矩阵 for i in range(1, n): value_1 = np.matmul(value_1, x) sum_1 = sum_1 + value_1 sum_2 = sum_1 + np.identity(n) reachability_matrix = sum_2 > 0.5 print("此有向图的可达矩阵为:") print(reachability_matrix.astype(int)) final = reachability_matrix + reachability_matrix.T for i in range(1, n): value_2 = np.matmul(value_2, y) sum_3 = sum_3 + value_2 sum_4 = sum_3 + np.identity(n) reachability_matrix_1 = sum_4 > 0.5 # 给出判断结果 if ((reachability_matrix.astype(int) == np.ones((n, n)).astype(int)).all()): print("此有向线图G为强连通图或其为无向连通图") elif ((final.astype(int) == np.ones((n, n)).astype(int)).all()): print("此有向线图G是单向连通图") elif ((reachability_matrix_1.astype(int) == np.ones((n, n)).astype(int)).all()): print("此有向线图G是弱连通图") else: print("此有向图不连通") # 下面展示图形化输出有向图G G = nx.DiGraph() for i in range(0, n): j = i + 1 G.add_node(i, desc='p' + str(j)) for p in range(0, n): for q in range(0, n): if x[p, q] == 1: G.add_edges_from([(p, q)], weight='1') edge_labels = dict([((u, v), d['weight']) for u, v, d in G.edges(data=True)]) edge_colors = ['black'] pos = nx.spring_layout(G) node_labels = nx.get_node_attributes(G, 'desc') nx.draw_networkx_labels(G, pos, labels=node_labels, font_size=16) # 设置字体大小为16 nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=12) nx.draw(G, pos, node_size=1500, edge_color=edge_colors, edge_cmap=plt.cm.Reds) plt.title('Directed Graph', fontsize=10) pylab.show()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。