赞
踩
TranE是一篇Bordes等人2013年发表在NIPS上的文章提出的算法。它的提出,是为了解决多关系数据(multi-relational data)的处理问题。TransE的直观含义,就是TransE基于实体和关系的分布式向量表示,将每个三元组实例(head,relation,tail)中的关系relation看做从实体head到实体tail的翻译,通过不断调整h、r和t(head、relation和tail的向量),使(h + r) 尽可能与 t 相等,即 h + r = t。
这篇文章主要用来记录下TransE的代码。代码难点有两点,一是生成随机数的过程相对复杂一些;第二是生成伪数据时的流程即corrupt_head
,其他照着主函数的执行流程应该都没问题。附一张corrupt_head
执行样例。
#include <cstring> #include <cstdio> #include <cstdlib> #include <cmath> #include <ctime> #include <string> #include <algorithm> #include <pthread.h> #include <iostream> #include <sstream> using namespace std; const float pi = 3.141592653589793238462643383; int transeThreads = 8; int transeTrainTimes = 1000; int nbatches = 10; int dimension = 50; float transeAlpha = 0.001; float margin = 1; string inPath = "../../"; string outPath = "../../"; int *lefHead, *rigHead; int *lefTail, *rigTail; struct Triple { int h, r, t; }; Triple *trainHead, *trainTail, *trainList; struct cmp_head { bool operator()(const Triple &a, const Triple &b) { return (a.h < b.h)||(a.h == b.h && a.r < b.r)||(a.h == b.h && a.r == b.r && a.t < b.t); } }; struct cmp_tail { bool operator()(const Triple &a, const Triple &b) { return (a.t < b.t)||(a.t == b.t && a.r < b.r)||(a.t == b.t && a.r == b.r && a.h < b.h); } }; /* There are some math functions for the program initialization. */ // 转换数组next_random中index为id的值 unsigned long long *next_random; // 转换next_random索引为id的值并返回 unsigned long long randd(int id) { next_random[id] = next_random[id] * (unsigned long long)25214903917 + 11; return next_random[id]; } int rand_max(int id, int x) { //小于x的随机数 int res = randd(id) % x; while (res<0) res+=x; return res; } float rand(float min, float max) { return min + (max - min) * rand() / (RAND_MAX + 1.0); } // 返回x的概率密度函数 float normal(float x, float miu,float sigma) { return 1.0/sqrt(2*pi)/sigma*exp(-1*(x-miu)*(x-miu)/(2*sigma*sigma)); } //返回一个大于或等于均值miu的概率密度并且属于[min,max]的数 float randn(float miu,float sigma, float min ,float max) { float x, y, dScope; do { x = rand(min,max); y = normal(x,miu,sigma); dScope=rand(0.0,normal(miu,miu,sigma)); } while (dScope > y); return x; } // 向量标准化 void norm(float * con) { float x = 0; for (int ii = 0; ii < dimension; ii++) x += (*(con + ii)) * (*(con + ii)); x = sqrt(x); if (x>1) for (int ii=0; ii < dimension; ii++) *(con + ii) /= x; } /* Read triples from the training file. */ int relationTotal, entityTotal, tripleTotal; float *relationVec, *entityVec; float *relationVecDao, *entityVecDao; // 将实体id 关系id 三元组导入、初始化要训练的向量 void init() { FILE *fin; int tmp; fin = fopen((inPath + "relation2id.txt").c_str(), "r"); //fopen创建或打开,c_str()返回一个指向正规C字符串的临时的指针常量 tmp = fscanf(fin, "%d", &relationTotal); //获取总的total数 fclose(fin); //构建关系向量 relationVec = (float *)calloc(relationTotal * dimension, sizeof(float));//分配realtionTotal*dimension for (int i=0;i<relationTotal; i++) { for (int ii=0;ii<dimension; ii++) relationVec[i*dimension+ii] = randn(0,1.0/dimension,-6/sqrt(dimension),6/sqrt(dimension));//(miu,sigma,min,max) } fin = fopen((inPath + "entity2id.txt").c_str(), "r"); tmp = fscanf(fin,"%d",&entityTotal); fclose(fin); entityVec = (float *)calloc(entityTotal * dimension, sizeof(float)); for (int i=0;i<entityTotal;i++) { for (int ii=0;ii<dimension;ii++) entityVec[i * dimension + ii] = randn(0, 1.0 / dimension, -6 / sqrt(dimension), 6 / sqrt(dimension)); norm(entityVec+i*dimension); // 单个entity向量标准化 } fin = fopen((inPath + "triple2id.txt").c_str(), "r"); tmp = fscanf(fin, "%d", &tripleTotal); trainHead = (Triple *)calloc(tripleTotal, sizeof(Triple)); trainTail = (Triple *)calloc(tripleTotal, sizeof(Triple)); trainList = (Triple *)calloc(tripleTotal, sizeof(Triple)); tripleTotal = 0; //trainlist存储三元组,复制给 trainHead和trainTail while (fscanf(fin, "%d", &trainList[tripleTotal].h) == 1) { tmp = fscanf(fin, "%d", &trainList[tripleTotal].t); tmp = fscanf(fin, "%d", &trainList[tripleTotal].r); trainHead[tripleTotal].h = trainList[tripleTotal].h; trainHead[tripleTotal].t = trainList[tripleTotal].t; trainHead[tripleTotal].r = trainList[tripleTotal].r; trainTail[tripleTotal].h = trainList[tripleTotal].h; trainTail[tripleTotal].t = trainList[tripleTotal].t; trainTail[tripleTotal].r = trainList[tripleTotal].r; tripleTotal++; } fclose(fin); //按照head和tail排序 sort(trainHead, trainHead + tripleTotal, cmp_head()); sort(trainTail, trainTail + tripleTotal, cmp_tail()); lefHead = (int *)calloc(entityTotal, sizeof(int)); rigHead = (int *)calloc(entityTotal, sizeof(int)); lefTail = (int *)calloc(entityTotal, sizeof(int)); rigTail = (int *)calloc(entityTotal, sizeof(int)); memset(rigHead, -1, sizeof(int)*entityTotal); //初始化 memset(rigTail, -1, sizeof(int)*entityTotal); for (int i=1;i<tripleTotal;i++) { if (trainTail[i].t != trainTail[i - 1].t) { rigTail[trainTail[i - 1].t] = i - 1; // 将索引为i-1的t的值置为i-1,意思TrainTail[i-1]的值的终止点 lefTail[trainTail[i].t] = i; // 将索引为i的t的值置为i,意思是TrainTail[i]与左侧值不同,意思TrainTail[i]的值的终止点 } if (trainHead[i].h != trainHead[i - 1].h) { rigHead[trainHead[i - 1].h] = i - 1; lefHead[trainHead[i].h] = i; } } rigHead[trainHead[tripleTotal - 1].h] = tripleTotal - 1; rigTail[trainTail[tripleTotal - 1].t] = tripleTotal - 1; relationVecDao = (float*)calloc(dimension * relationTotal, sizeof(float)); entityVecDao = (float*)calloc(dimension * entityTotal, sizeof(float)); } /* Training process of transE. */ int transeLen; int transeBatch; float res; // 计算距离 d(e1-e2-r)=sum(|e1-e2-r|) float calc_sum(int e1, int e2, int rel) { float sum=0; int last1 = e1 * dimension; int last2 = e2 * dimension; int lastr = rel * dimension; for (int ii=0; ii < dimension; ii++) { // 从entityVec取值计算loss sum += fabs(entityVec[last2 + ii] - entityVec[last1 + ii] - relationVec[lastr + ii]); } return sum; } // 更新梯度,正样本试图缩小梯度,负样本试图增大梯度 void gradient(int e1_a, int e2_a, int rel_a, int e1_b, int e2_b, int rel_b) { int lasta1 = e1_a * dimension; int lasta2 = e2_a * dimension; int lastar = rel_a * dimension; int lastb1 = e1_b * dimension; int lastb2 = e2_b * dimension; int lastbr = rel_b * dimension; for (int ii=0; ii < dimension; ii++) { float x; x = (entityVec[lasta2 + ii] - entityVec[lasta1 + ii] - relationVec[lastar + ii]); if (x > 0) x = -transeAlpha; else x = transeAlpha; relationVec[lastar + ii] -= x; entityVec[lasta1 + ii] -= x; entityVec[lasta2 + ii] += x; x = (entityVec[lastb2 + ii] - entityVec[lastb1 + ii] - relationVec[lastbr + ii]); if (x > 0) x = transeAlpha; else x = -transeAlpha; relationVec[lastbr + ii] -= x; entityVec[lastb1 + ii] -= x; entityVec[lastb2 + ii] += x; } } // 计算距离并更新梯度 void train_kb(int e1_a, int e2_a, int rel_a, int e1_b, int e2_b, int rel_b) { float sum1 = calc_sum(e1_a, e2_a, rel_a); float sum2 = calc_sum(e1_b, e2_b, rel_b); // 不满足条件则需要更新梯度 if (sum1 + margin > sum2) { res += margin + sum1 - sum2; gradient(e1_a, e2_a, rel_a, e1_b, e2_b, rel_b); } } // 根据相同的h返回一个假的样本t,获取三元组中相同h对应的r int corrupt_head(int id, int h, int r) { int lef, rig, mid, ll, rr; lef = lefHead[h] - 1; rig = rigHead[h]; while (lef + 1 < rig) { //则该值不止一个 mid = (lef + rig) >> 1; // 除2 if (trainHead[mid].r >= r) rig = mid; else lef = mid; } ll = rig; // r值对应的index lef = lefHead[h]; rig = rigHead[h] + 1; while (lef + 1 < rig) { mid = (lef + rig) >> 1; if (trainHead[mid].r <= r) lef = mid; else rig = mid; } rr = lef; int tmp = rand_max(id, entityTotal - (rr - ll + 1)); //生成一个小于entityTotal - (rr - ll + 1)的随机数 if (tmp < trainHead[ll].t) return tmp; //小于初始t 直接返回 if (tmp > trainHead[rr].t - rr + ll - 1) return tmp + rr - ll + 1; // lef = ll, rig = rr + 1; while (lef + 1 < rig) { mid = (lef + rig) >> 1; if (trainHead[mid].t - mid + ll - 1 < tmp) lef = mid; else rig = mid; } return tmp + lef - ll + 1; } int corrupt_tail(int id, int t, int r) { int lef, rig, mid, ll, rr; lef = lefTail[t] - 1; rig = rigTail[t]; while (lef + 1 < rig) { mid = (lef + rig) >> 1; if (trainTail[mid].r >= r) rig = mid; else lef = mid; } ll = rig; lef = lefTail[t]; rig = rigTail[t] + 1; while (lef + 1 < rig) { mid = (lef + rig) >> 1; if (trainTail[mid].r <= r) lef = mid; else rig = mid; } rr = lef; int tmp = rand_max(id, entityTotal - (rr - ll + 1)); if (tmp < trainTail[ll].h) return tmp; if (tmp > trainTail[rr].h - rr + ll - 1) return tmp + rr - ll + 1; lef = ll, rig = rr + 1; while (lef + 1 < rig) { mid = (lef + rig) >> 1; if (trainTail[mid].h - mid + ll - 1 < tmp) lef = mid; else rig = mid; } return tmp + lef - ll + 1; } // 接受线程id作为输入,调用corrupt生成正负样本,train_kb进行训练 void* transetrainMode(void *con) { int id; id = (unsigned long long)(con); //补0即可 next_random[id] = rand(); for (int k = transeBatch / transeThreads; k >= 0; k--) { // 一个batch训练的样本数按照线程均分 int j; // 生成一个样本随机的样本id int i = rand_max(id, transeLen); // i为生成的随机数 int pr = 500; //一半的概率1/2决定生成 伪head tail if (randd(id) % 1000 < pr) { // 选择正、负样本作为训练输入 j = corrupt_head(id, trainList[i].h, trainList[i].r); train_kb(trainList[i].h, trainList[i].t, trainList[i].r, trainList[i].h, j, trainList[i].r); } else { j = corrupt_tail(id, trainList[i].t, trainList[i].r); train_kb(trainList[i].h, trainList[i].t, trainList[i].r, j, trainList[i].t, trainList[i].r); } norm(relationVec + dimension * trainList[i].r); // 标准化 norm(entityVec + dimension * trainList[i].h); norm(entityVec + dimension * trainList[i].t); norm(entityVec + dimension * j); } pthread_exit(NULL); } // 创建线程执行 调用transetrainMode 模型训练 void train_transe(void *con) { transeLen = tripleTotal; transeBatch = transeLen / nbatches; // 一个batch的样本大小 next_random = (unsigned long long *)calloc(transeThreads, sizeof(unsigned long long)); // 根据线程数创建表示线程的数组 for (int epoch = 0; epoch < transeTrainTimes; epoch++) { res = 0; // 一个epoch包含nbatches个batch,每个batch再按线程划分 for (int batch = 0; batch < nbatches; batch++) { pthread_t *pt = (pthread_t *)malloc(transeThreads * sizeof(pthread_t)); // 表示线程id,可以认为unsigned long int类型 for (long a = 0; a < transeThreads; a++) pthread_create(&pt[a], NULL, transetrainMode, (void*)a); // 创建线程(指向线程标识符的指针,线程属性,运行函数的地址,运行函数的参数) for (long a = 0; a < transeThreads; a++) pthread_join(pt[a], NULL); //以阻塞的方式等待thread指定的线程结束,主线程等待直到等待的线程结束 free(pt); } printf("epoch %d %f\n", epoch, res); } } /* save result */ void out_transe() { stringstream ss; ss << dimension; string dim = ss.str(); FILE* f2 = fopen((outPath + "TransE_relation2vec_" + dim + ".vec").c_str(), "w"); FILE* f3 = fopen((outPath + "TransE_entity2vec_" + dim + ".vec").c_str(), "w"); for (int i=0; i < relationTotal; i++) { int last = dimension * i; for (int ii = 0; ii < dimension; ii++) fprintf(f2, "%.6f\t", relationVec[last + ii]); fprintf(f2,"\n"); } for (int i = 0; i < entityTotal; i++) { int last = i * dimension; for (int ii = 0; ii < dimension; ii++) fprintf(f3, "%.6f\t", entityVec[last + ii] ); fprintf(f3,"\n"); } fclose(f2); fclose(f3); } /* Main function */ int main() { time_t start = time(NULL); init(); train_transe(NULL); out_transe(); cout << time(NULL) - start << " s" << endl; return 0; }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。