赞
踩
- from sklearn.datasets import load_boston
- from sklearn.model_selection import train_test_split
- import xgboost as xgb,numpy as np
- from sklearn.metrics import mean_squared_error
-
- boston = load_boston()
- X = boston.data # 特征值
- y = boston.target # 目标值
-
- # 划分数据集,80% 训练数据和 20% 测试数据
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
- print(X_train.shape)
- print(X_train)
(404, 13) [[2.59406e+01 0.00000e+00 1.81000e+01 ... 2.02000e+01 1.27360e+02 2.66400e+01] [1.88360e-01 0.00000e+00 6.91000e+00 ... 1.79000e+01 3.96900e+02 1.41500e+01] [8.87300e-02 2.10000e+01 5.64000e+00 ... 1.68000e+01 3.95560e+02 1.34500e+01] ... [3.73800e-02 0.00000e+00 5.19000e+00 ... 2.02000e+01 3.89400e+02 6.75000e+00] [1.40520e-01 0.00000e+00 1.05900e+01 ... 1.86000e+01
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。