3.txt1hadoop fs -put 3.txt /tmp/3.txt全文的例子均以该文件做测试用例,统计单词出现的次数(WordCount)。 1、原生态的_hadoop中执行mapreduce任务的几种方式">
当前位置:   article > 正文

hadoop 里执行 MapReduce 任务的几种常见方式_hadoop中执行mapreduce任务的几种方式

hadoop中执行mapreduce任务的几种方式

说明:

测试文件:

1echo -e "aa\tbb \tcc\nbb\tcc\tdd" > 3.txt
1hadoop fs -put 3.txt /tmp/3.txt

全文的例子均以该文件做测试用例,统计单词出现的次数(WordCount)。

1、原生态的方式:java 源码编译打包成jar包后,由 hadoop 脚本调度执行,举例:

01import java.io.IOException;
02import java.util.StringTokenizer;
03 
04import org.apache.hadoop.conf.Configuration;
05import org.apache.hadoop.fs.Path;
06import org.apache.hadoop.io.IntWritable;
07import org.apache.hadoop.io.Text;
08import org.apache.hadoop.mapreduce.Job;
09import org.apache.hadoop.mapreduce.Mapper;
10import org.apache.hadoop.mapreduce.Reducer;
11import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
12import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
13import org.apache.hadoop.util.GenericOptionsParser;
14 
15public class WordCount {
16 
17    public static class TokenizerMapper extends
18            Mapper<Object, Text, Text, IntWritable> {
19        /** 
20         * LongWritable, IntWritable, Text 均是 Hadoop 中实现的用于封装 Java 数据类型的类,
21         * 这些类实现了WritableComparable接口, 
22         * 都能够被串行化从而便于在分布式环境中进行数据交换,
23         * 你可以将它们分别视为long,int,String 的替代品。 
24         */  
25        // IntWritable one 相当于 java 原生类型 int 1
26        private final static IntWritable one = new IntWritable(1);
27        private Text word = new Text();
28 
29        public void map(Object key, Text value, Context context)
30                throws IOException, InterruptedException {
31            // 每行记录都会调用 map 方法处理,此处是每行都被分词
32            StringTokenizer itr = new StringTokenizer(value.toString());
33            while (itr.hasMoreTokens()) {
34                word.set(itr.nextToken());
35                // 输出每个词及其出现的次数 1,类似 <word1,1><word2,1><word1,1>
36                context.write(word, one);
37            }
38        }
39    }
40 
41    public static class IntSumReducer extends
42            Reducer<Text, IntWritable, Text, IntWritable> {
43        private IntWritable result = new IntWritable();
44 
45        public void reduce(Text key, Iterable<IntWritable> values,
46                Context context) throws IOException, InterruptedException {
47            // key 相同的键值对会被分发到同一个 reduce中处理
48            // 例如 <word1,<1,1>>在 reduce1 中处理,而<word2,<1>> 会在 reduce2 中处理
49            int sum = 0;
50            // 相同的key(单词)的出现次数会被 sum 累加
51            for (IntWritable val : values) {
52                sum += val.get();
53            }
54            result.set(sum);
55            // 1个 reduce 处理完1 个键值对后,会输出其 key(单词)对应的结果(出现次数)
56            context.write(key, result);
57        }
58    }
59 
60    public static void main(String[] args) throws Exception {
61        Configuration conf = new Configuration();
62        // 多队列hadoop集群中,设置使用的队列
63        conf.set("mapred.job.queue.name", "regular");
64        // 之所以此处不直接用 argv[1] 这样的,是为了排除掉运行时的集群属性参数,例如队列参数,
65        // 得到用户输入的纯参数,如路径信息等
66        String[] otherArgs = new GenericOptionsParser(conf, args)
67                .getRemainingArgs();
68        if (otherArgs.length != 2) {
69            System.err.println("Usage: wordcount <in> <out>");
70            System.exit(2);
71        }
72        Job job = new Job(conf, "word count");
73        job.setJarByClass(WordCount.class);
74        // map、reduce 输入输出类
75        job.setMapperClass(TokenizerMapper.class);
76        job.setCombinerClass(IntSumReducer.class);
77        job.setReducerClass(IntSumReducer.class);
78        job.setOutputKeyClass(Text.class);
79        job.setOutputValueClass(IntWritable.class);
80        // 输入输出路径
81        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
82        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
83        // 多子job的类中,可以保证各个子job串行执行
84        System.exit(job.waitForCompletion(true) ? 0 : 1);
85    }
86}

执行:

1bin/hadoop jar /tmp/wordcount.jar WordCount /tmp/3.txt /tmp/5

结果:

1hadoop fs -cat /tmp/5/*
2aa      1
3bb      2
4cc      2
5dd      1

参考资料:

Hadoop - Map/Reduce 通过WordCount例子的变化来了解新版hadoop接口的变化

http://blog.csdn.net/derekjiang/article/details/6836209

Hadoop示例程序WordCount运行及详解

http://samuschen.iteye.com/blog/763940

官方的 wordcount v1.0 例子

http://hadoop.apache.org/docs/r1.1.1/mapred_tutorial.html#Example%3A+WordCount+v1.0

2、基于 MR 的数据流 Like SQL 脚本开发语言:pig
1A1 = load '/data/3.txt';
2A = stream A1 through `sed "s/\t/ /g"`;
3B = foreach A generate flatten(TOKENIZE((chararray)$0)) as word;
4C = filter B by word matches '\\w+';
5D = group C by word;
6E = foreach D generate COUNT(C), group;
7dump E;

注意:不同分隔符对load及后面的$0的影响。

详情请见:
https://gist.github.com/186460
http://www.slideshare.net/erikeldridge/a-brief-handson-introduction-to-hadoop-pig

3、构建数据仓库的类 SQL 开发语言:hive
1create table textlines(text string);
2load data inpath '/data/3.txt' overwrite into table textlines;
3SELECT wordColumn, count(1) FROM textlines LATERAL VIEW explode(split(text,'\t+')) wordTable AS wordColumn GROUP BY wordColumn;

详情请见:

http://my.oschina.net/leejun2005/blog/83045
http://blog.csdn.net/techdo/article/details/7433222

4、跨平台的脚本语言:python
map:
1#!/usr/bin/python
2import os,re,sys
3for line in sys.stdin:
4    for i in line.strip().split("\t"):
5        print i

reduce:

01#!/usr/bin/python
02import os,re,sys
03arr = {}
04for words in sys.stdin:
05    word = words.strip()
06    if word not in arr:
07        arr[word] = 1
08    else:
09        arr[word] += 1
10for k, v in arr.items():
11    print str(k) + ": " + str(v)

最后在shell下执行:

1hadoop jar $HADOOP_HOME/contrib/streaming/hadoop-streaming-0.20.203.0.jar -file map.py -file reduce.py  -mapper map.py -reducer reduce.py -input /data/3.txt -output /data/py

注意:脚本开头需要显示指定何种解释器以及赋予脚本执行权限

详情请见:
http://blog.csdn.net/jiedushi/article/details/7390015

5、Linux 下的瑞士军刀:shell 脚本
map:
1#!/bin/bash
2tr '\t' '\n'

reduce:

1#!/bin/bash
2sort|uniq -c

最后在shell下执行:

01june@deepin:~/hadoop/hadoop-0.20.203.0/tmp>
02hadoop jar $HADOOP_HOME/contrib/streaming/hadoop-streaming-0.20.203.0.jar -file map.py -file reduce.py  -mapper map.py -reducer reduce.py -input /data/3.txt -output /data/py
03packageJobJar: [map.py, reduce.py, /home/june/data_hadoop/tmp/hadoop-unjar2676221286002400849/] [] /tmp/streamjob8722854685251202950.jar tmpDir=null
0412/10/14 21:57:00 INFO mapred.FileInputFormat: Total input paths to process : 1
0512/10/14 21:57:00 INFO streaming.StreamJob: getLocalDirs(): [/home/june/data_hadoop/tmp/mapred/local]
0612/10/14 21:57:00 INFO streaming.StreamJob: Running job: job_201210141552_0041
0712/10/14 21:57:00 INFO streaming.StreamJob: To kill this job, run:
0812/10/14 21:57:00 INFO streaming.StreamJob: /home/june/hadoop/hadoop-0.20.203.0/bin/../bin/hadoop job  -Dmapred.job.tracker=localhost:9001 -kill job_201210141552_0041
0912/10/14 21:57:00 INFO streaming.StreamJob: Tracking URL: http://localhost:50030/jobdetails.jsp?jobid=job_201210141552_0041
1012/10/14 21:57:01 INFO streaming.StreamJob:  map 0%  reduce 0%
1112/10/14 21:57:13 INFO streaming.StreamJob:  map 67%  reduce 0%
1212/10/14 21:57:19 INFO streaming.StreamJob:  map 100%  reduce 0%
1312/10/14 21:57:22 INFO streaming.StreamJob:  map 100%  reduce 22%
1412/10/14 21:57:31 INFO streaming.StreamJob:  map 100%  reduce 100%
1512/10/14 21:57:37 INFO streaming.StreamJob: Job complete: job_201210141552_0041
1612/10/14 21:57:37 INFO streaming.StreamJob: Output: /data/py
17june@deepin:~/hadoop/hadoop-0.20.203.0/tmp>
18hadoop fs -cat /data/py/part-00000
19      1 aa 
20      1 bb 
21      1 bb 
22      2 cc 
23      1 dd 
24june@deepin:~/hadoop/hadoop-0.20.203.0/tmp>


特别提示:上述有些方法对字段后的空格忽略或计算,请注意仔细甄别。


说明:列举了上述几种方法主要是给大家一个不同的思路,
在解决问题的过程中,开发效率、执行效率都是我们需要考虑的,不要太局限某一种方法了。
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/凡人多烦事01/article/detail/567761
推荐阅读
相关标签
  

闽ICP备14008679号