赞
踩
加载一张照片
维度转换为224*224
转换为array
from keras.preprocessing.image import load_img,img_to_array
img_path = '1.jpg'
img = load_img(img_path,target_size=(224,224))
img = img_to_array(img)
type(img)
numpy.ndarray
获取vgg16 主要卷积层 不要后面的全连接层 (自己写)
改变输入数据的维度
图像预处理
from keras.applications.vgg16 import VGG16
from keras.applications.vgg16 import preprocess_input
import numpy as np
model_vgg = VGG16(weights='imagenet',include_top=False)
x = np.expand_dims(img,axis=0)
x = preprocess_input(x)
print(x.shape)
(1, 224, 224, 3)
#特征提取
features = model_vgg.predict(x)`在这里插入代码片`
print(features.shape)
(1, 7, 7, 512)
#全连接层准备 改变数据维度
features = features.reshape(1,7*7*512)
print(features.shape)
(1, 25088)
from keras.preprocessing.image import img_to_array,load_img from keras.applications.vgg16 import VGG16 from keras.applications.vgg16 import preprocess_input import numpy as np # 数据预处理和模型加载 model_vgg = VGG16(weights='imagenet', include_top=False) #define a method to load and preprocess the image def modelProcess(img_path,model): img = load_img(img_path, target_size=(224, 224)) img = img_to_array(img) x = np.expand_dims(img,axis=0) x = preprocess_input(x) x_vgg = model.predict(x) x_vgg = x_vgg.reshape(1,25088) return x_vgg #list file names of the training datasets import os folder = "dataset/data_vgg/cats" dirs = os.listdir(folder) #generate path for the images img_path = [] for i in dirs: if os.path.splitext(i)[1] == ".jpg": img_path.append(i) img_path = [folder+"//"+i for i in img_path] #preprocess multiple images features1 = np.zeros([len(img_path),25088]) for i in range(len(img_path)): feature_i = modelProcess(img_path[i],model_vgg) print('preprocessed:',img_path[i]) features1[i] = feature_i folder = "dataset/data_vgg/dogs" dirs = os.listdir(folder) img_path = [] for i in dirs: if os.path.splitext(i)[1] == ".jpg": img_path.append(i) img_path = [folder+"//"+i for i in img_path] features2 = np.zeros([len(img_path),25088]) for i in range(len(img_path)): feature_i = modelProcess(img_path[i],model_vgg) print('preprocessed:',img_path[i]) features2[i] = feature_i #label the results print(features1.shape,features2.shape) y1 = np.zeros(300) y2 = np.ones(300) #generate the training data X = np.concatenate((features1,features2),axis=0) y = np.concatenate((y1,y2),axis=0) y = y.reshape(-1,1) print(X.shape,y.shape) from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=50) print(X_train.shape,X_test.shape,X.shape)
from keras.models import Sequential
from keras.layers import Dense
# 构建模型 两个全连接层 25088-10 10-1 (1就是二分类)
model = Sequential()
model.add(Dense(units=10,activation='relu',input_dim=25088))
model.add(Dense(units=1,activation='sigmoid'))
model.summary()
#定义loss opt acc基本参数
odel.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])
#train the model
model.fit(X_train,y_train,epochs=50)
#测试准确率
from sklearn.metrics import accuracy_score
y_train_predict = model.predict_classes(X_train)
accuracy_train = accuracy_score(y_train,y_train_predict)
print(accuracy_train)
y_test_predict = model.predict_classes(X_test)
accuracy_test = accuracy_score(y_test,y_test_predict)
print(accuracy_test)
# 找个网图测试
img_path = 'cat1.jpg'
img = load_img(img_path,target_size=(224,224))
img = img_to_array(img)
x = np.expand_dims(img,axis=0)
x = preprocess_input(x)
features = model_vgg.predict(x)
features = features.reshape(1,7*7*512)
result = model.predict_classes(features)
print(result)
可视化测试 找10个图片名字是1-10 import matplotlib as mlp font2 = {'family' : 'SimHei', 'weight' : 'normal', 'size' : 20, } mlp.rcParams['font.family'] = 'SimHei' mlp.rcParams['axes.unicode_minus'] = False from matplotlib import pyplot as plt from matplotlib.image import imread from keras.preprocessing.image import load_img from keras.preprocessing.image import img_to_array from keras.models import load_model #from cv2 import load_img a = [i for i in range(1,10)] fig = plt.figure(figsize=(10,10)) for i in a: img_name = str(i)+'.jpg' img_path = img_name img = load_img(img_path, target_size=(224, 224)) img = img_to_array(img) x = np.expand_dims(img,axis=0) x = preprocess_input(x) x_vgg = model_vgg.predict(x) x_vgg = x_vgg.reshape(1,25088) result = model.predict_classes(x_vgg) img_ori = load_img(img_name, target_size=(250, 250)) plt.subplot(3,3,i) plt.imshow(img_ori) plt.title('预测为:狗狗' if result[0][0] == 1 else '预测为:猫咪') plt.show()
结果如图
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。