赞
踩
目录
强化学习主要由两部分组成:智能体(agent)和环境(env)。在强化学习过程中,智能体与环境一直在交互。智能体在环境里面获取某个状态后,它会利用该状态输出一个动作(action)。然后这个动作会在环境之中被执行,环境会根据智能体采取的动作,输出下一个状态以及当前这个动作带来的奖励。智能体的目的就是尽可能多地从环境中获取奖励。
本次我使用到的框架是pytorch,因为DQN算法的实现包含了部分的神经网络,这部分对我来说使用pytorch会更顺手,所以就选择了这个。
gym 定义了一套接口,用于描述强化学习中的环境这一概念,同时在其官方库中,包含了一些已实现的环境。
传统的强化学习算法使用的是Q表格存储状态价值函数或者动作价值函数,但是实际应用时,问题在的环境可能有很多种状态,甚至数不清,所以这种情况下使用离散的Q表格存储价值函数会非常不合理,所以DQN(Deep Q-learning)算法,使用神经网络拟合动作价值函数。
通常DQN算法只能处理动作离散,状态连续的情况,使用神经网络拟合出动作价值函数, 然后针对动作价值函数,选择出当状态state固定的Q值最大的动作a。
每一次的样本都放到样本池中,所以可以多次反复的使用一个样本,重复利用。训练时一次随机抽取多个数据样本来进行训练。
DQN算法的更新目标时让逼近, 但是如果两个Q使用一个网络计算,那么Q的目标值也在不断改变, 容易造成神经网络训练的不稳定。DQN使用目标网络,训练时目标值Q使用目标网络来计算,目标网络的参数定时和训练网络的参数同步。
- import time
- import random
- import torch
- from torch import nn
- from torch import optim
- import gym
- import numpy as np
- import matplotlib.pyplot as plt
- from collections import deque, namedtuple # 队列类型
- from tqdm import tqdm # 绘制进度条用
-
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- Transition = namedtuple('Transition', ('state', 'action', 'reward', 'next_state', 'done'))
- class ReplayMemory(object):
-
- def __init__(self, memory_size):
- self.memory = deque([], maxlen=memory_size)
-
- def sample(self, batch_size):
- batch_data = random.sample(self.memory, batch_size)
- state, action, reward, next_state, done = zip(*batch_data)
- return state, action, reward, next_state, done
-
- def push(self, *args):
- # *args: 把传进来的所有参数都打包起来生成元组形式
- # self.push(1, 2, 3, 4, 5)
- # args = (1, 2, 3, 4, 5)
- self.memory.append(Transition(*args))
-
- def __len__(self):
- return len(self.memory)
- class Qnet(nn.Module):
-
- def __init__(self, n_observations, n_actions):
- super(Qnet, self).__init__()
- self.model = nn.Sequential(
- nn.Linear(n_observations, 128),
- nn.ReLU(),
- nn.Linear(128, n_actions)
- )
-
- def forward(self, state):
- return self.model(state)
- class Agent(object):
-
- def __init__(self, observation_dim, action_dim, gamma, lr, epsilon, target_update):
- self.action_dim = action_dim
- self.q_net = Qnet(observation_dim, action_dim).to(device)
- self.target_q_net = Qnet(observation_dim, action_dim).to(device)
- self.gamma = gamma
- self.lr = lr
- self.epsilon = epsilon
- self.target_update = target_update
- self.count = 0
-
- self.optimizer = optim.Adam(params=self.q_net.parameters(), lr=lr)
- self.loss = nn.MSELoss()
-
-
- def take_action(self, state):
- if np.random.uniform(0, 1) < 1 - self.epsilon:
- state = torch.tensor(state, dtype=torch.float).to(device)
- action = torch.argmax(self.q_net(state)).item()
- else:
- action = np.random.choice(self.action_dim)
- return action
-
- def update(self, transition_dict):
-
- states = transition_dict.state
- actions = np.expand_dims(transition_dict.action, axis=-1) # 扩充维度
- rewards = np.expand_dims(transition_dict.reward, axis=-1) # 扩充维度
- next_states = transition_dict.next_state
- dones = np.expand_dims(transition_dict.done, axis=-1) # 扩充维度
-
- states = torch.tensor(states, dtype=torch.float).to(device)
- actions = torch.tensor(actions, dtype=torch.int64).to(device)
- rewards = torch.tensor(rewards, dtype=torch.float).to(device)
- next_states = torch.tensor(next_states, dtype=torch.float).to(device)
- dones = torch.tensor(dones, dtype=torch.float).to(device)
-
- # update q_values
- # gather(1, acitons)意思是dim=1按行号索引, index=actions
- # actions=[[1, 2], [0, 1]] 意思是索引出[[第一行第2个元素, 第1行第3个元素],[第2行第1个元素, 第2行第2个元素]]
- # 相反,如果是这样
- # gather(0, acitons)意思是dim=0按列号索引, index=actions
- # actions=[[1, 2], [0, 1]] 意思是索引出[[第一列第2个元素, 第2列第3个元素],[第1列第1个元素, 第2列第2个元素]]
- # states.shape(64, 4) actions.shape(64, 1), 每一行是一个样本,所以这里用dim=1很合适
- predict_q_values = self.q_net(states).gather(1, actions)
- with torch.no_grad():
- # max(1) 即 max(dim=1)在行向找最大值,这样的话shape(64, ), 所以再加一个view(-1, 1)扩增至(64, 1)
- max_next_q_values = self.target_q_net(next_states).max(1)[0].view(-1, 1)
- q_targets = rewards + self.gamma * max_next_q_values * (1 - dones)
- l = self.loss(predict_q_values, q_targets)
-
- self.optimizer.zero_grad()
- l.backward()
- self.optimizer.step()
-
- if self.count % self.target_update == 0:
- # copy model parameters
- self.target_q_net.load_state_dict(self.q_net.state_dict())
-
- self.count += 1
- def run_episode(env, agent, repalymemory, batch_size):
- state = env.reset()
- reward_total = 0
- while True:
- action = agent.take_action(state)
- next_state, reward, done, _ = env.step(action)
- # print(reward)
- repalymemory.push(state, action, reward, next_state, done)
- reward_total += reward
- if len(repalymemory) > batch_size:
- state_batch, action_batch, reward_batch, next_state_batch, done_batch = repalymemory.sample(batch_size)
- T_data = Transition(state_batch, action_batch, reward_batch, next_state_batch, done_batch)
- # print(T_data)
- agent.update(T_data)
- state = next_state
- if done:
- break
- return reward_total
-
-
- def episode_evaluate(env, agent, render):
- reward_list = []
- for i in range(5):
- state = env.reset()
- reward_episode = 0
- while True:
- action = agent.take_action(state)
- next_state, reward, done, _ = env.step(action)
- reward_episode += reward
- state = next_state
- if done:
- break
- if render:
- env.render()
- reward_list.append(reward_episode)
- return np.mean(reward_list).item()
-
- def test(env, agent, delay_time):
- state = env.reset()
- reward_episode = 0
- while True:
- action = agent.take_action(state)
- next_state, reward, done, _ = env.step(action)
- reward_episode += reward
- state = next_state
- if done:
- break
- env.render()
- time.sleep(delay_time)
模型训练使用到的环境时gym提供的CartPole游戏(Cart Pole - Gymnasium Documentation (farama.org)),这个环境比较经典,小车运行结束的要求有三个:
(1)杆子的角度超过度
(2)小车位置大于(小车中心到达显示屏边缘)
(3)小车移动步数超过200(v1是500)
小车每走一步奖励就会+1,所以在v0版本环境中,小车一次episode的最大奖励为200。
- if __name__ == "__main__":
-
- # print("prepare for RL")
- env = gym.make("CartPole-v0")
- env_name = "CartPole-v0"
- observation_n, action_n = env.observation_space.shape[0], env.action_space.n
- # print(observation_n, action_n)
- agent = Agent(observation_n, action_n, gamma=0.98, lr=2e-3, epsilon=0.01, target_update=10)
-
- replaymemory = ReplayMemory(memory_size=10000)
- batch_size = 64
-
- num_episodes = 200
- reward_list = []
- # print("start to train model")
- # 显示10个进度条
- for i in range(10):
- with tqdm(total=int(num_episodes/10), desc="Iteration %d" % i) as pbar:
- for episode in range(int(num_episodes / 10)):
-
- reward_episode = run_episode(env, agent, replaymemory, batch_size)
- reward_list.append(reward_episode)
-
- if (episode+1) % 10 == 0:
-
- test_reward = episode_evaluate(env, agent, False)
- # print("Episode %d, total reward: %.3f" % (episode, test_reward))
- pbar.set_postfix({
- 'episode': '%d' % (num_episodes / 10 * i + episode + 1),
- 'return' : '%.3f' % (test_reward)
- })
- pbar.update(1) # 更新进度条
-
- test(env, agent, 0.5) # 最后用动画观看一下效果
- episodes_list = list(range(len(reward_list)))
- plt.plot(episodes_list, reward_list)
- plt.xlabel('Episodes')
- plt.ylabel('Returns')
- plt.title('Double DQN on {}'.format(env_name))
- plt.show()
想要开启动画的话,这句代码里面的False更改为True。
test_reward = episode_evaluate(env, agent, False)
参考资料:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。