当前位置:   article > 正文

Pytorch学习笔记——Batch Norm方法_pytorch batchnorm用法

pytorch batchnorm用法

1.自定义BatchNorm

import time
import torch
from torch import nn,optim
import torch.nn.functional as F
import torchvision

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def batch_norm(is_training,X,gamma,beta,moving_mean,moving_var,eps,momentum):
    if not is_training:
        X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
    else:
        assert len(X.shape) in (2,4)
        if len(X.shape) == 2:
            mean = X.mean(dim=0)
            var = ((X-mean)**2).mean(dim=0)
        else:
            mean = X.mean(dim=0,keepdim=True).mean(dim=2,keepdim=True).mean(dim=3,keepdim=True)
            var = ((X-mean)**2).mean(dim=0,keepdim=True).mean(dim=2,keepdim=True).mean(dim=3,keepdim=True)
        X_hat = (X-mean) / torch.sqrt(var+eps)
        moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
        moving_var = momentum * moving_var + (1.0 - momentum) *var
    Y = gamma * X_hat + beta
    return Y,moving_mean,moving_var

class BatchNorm(nn.Module):
    def __init__(self,num_features,num_dims):
        super(BatchNorm,self).__init__()
        if num_dims == 2:
            shape = (1,num_features)
        else:
            shape = (1,num_features,1,1)
        self.gamma = nn.Parameter(torch.ones(shape))
        self.beta = nn.Parameter(torch.zeros(shape))
        self.moving_mean = torch.zeros(shape)
        self.moving_var = torch.zeros(shape)

    def forward(self,X):
        if self.moving_mean.device != X.device:
            self.moving_mean = self.moving_mean.to(X.device)
            self.moving_var = self.moving_var.to(X.device)
        Y,self.moving_mean,self.moving_var = batch_norm(self.training,X,self.gamma,self.beta,self.moving_mean,self.moving_var,eps=1e-5,momentum=0.9)
        return Y

class FlattenLayer(nn.Module):
    def __init__(self):
        super(FlattenLayer,self).__init__()
    def forward(self,x):
        return x.view(x.shape[0],-1)

net = nn.Sequential(nn.Conv2d(1,6,5),
                    BatchNorm(6,num_dims=4),
                    nn.Sigmoid(),
                    nn.MaxPool2d(2,2),
                    nn.Conv2d(6,16,5),
                    BatchNorm(16,num_dims=4),
                    nn.Sigmoid(),
                    nn.MaxPool2d(2,2),
                    FlattenLayer(),
                    nn.Linear(16*4*4,120),
                    BatchNorm(120,num_dims=2),
                    nn.Sigmoid(),
                    nn.Linear(120,84),
                    BatchNorm(84,num_dims=2),
                    nn.Sigmoid(),
                    nn.Linear(84,10))

def evaluate_accuracy(data_iter,net,device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')):
    acc_sum,n = 0.0,0
    with torch.no_grad():
        for X,y in data_iter:
            if isinstance(net,torch.nn.Module):
                net.eval()
                acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
                net.train()
            else:
                if('is_training' in net.__code__.co_varnames):
                    acc_sum += (net(X,is_training=False).argmax(dim=1) == y).float().sum().item()
                else:
                    acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
            n += y.shape[0]
    return acc_sum/n

def load_data_fashion_mnist(batch_size,resize=None,root='~/Datasets/FashionMNIST'):
    trans = []
    if resize:
        trans.append(torchvision.transforms.Resize(size=resize))
    trans.append(torchvision.transforms.ToTensor())

    transform = torchvision.transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(root=root,train=True,download=True,transform=transform)
    mnist_test = torchvision.datasets.FashionMNIST(root=root,train=False,download=True,transform=transform)

    train_iter = torch.utils.data.DataLoader(mnist_train,batch_size=batch_size,shuffle=True,num_workers=4)
    test_iter = torch.utils.data.DataLoader(mnist_test,batch_size=batch_size,shuffle=False,num_workers=4)

    return train_iter,test_iter

def train_ch5(net,train_iter,test_iter,batch_size,optimizer,device,num_epochs):
    net = net.to(device)
    print("training on ",device)
    loss = torch.nn.CrossEntropyLoss()
    batch_count = 0
    for epoch in range(num_epochs):
        train_l_sum,train_acc_sum,n,start = 0.0,0.0,0,time.time()
        for X,y in train_iter:
            X = X.to(device)
            y = y.to(device)
            y_hat = net(X)
            l = loss(y_hat,y)
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            train_l_sum += l.cpu().item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
            n += y.shape[0]
            batch_count += 1
        test_acc = evaluate_accuracy(test_iter,net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec' %(epoch+1,train_l_sum/batch_count,train_acc_sum/n,test_acc,time.time()-start))

batch_size = 256
train_iter,test_iter = load_data_fashion_mnist(batch_size=batch_size)

lr,num_epochs = 0.001,5
optimizer = torch.optim.Adam(net.parameters(),lr=lr)
train_ch5(net,train_iter,test_iter,batch_size,optimizer,device,num_epochs)

print(net[1].gamma.view((-1,)))
print(net[1].beta.view((-1,)))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129

2.结果
在这里插入图片描述3.Pytorch自带类

import time
import torch
from torch import nn,optim
import torch.nn.functional as F
import torchvision

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def batch_norm(is_training,X,gamma,beta,moving_mean,moving_var,eps,momentum):
    if not is_training:
        X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
    else:
        assert len(X.shape) in (2,4)
        if len(X.shape) == 2:
            mean = X.mean(dim=0)
            var = ((X-mean)**2).mean(dim=0)
        else:
            mean = X.mean(dim=0,keepdim=True).mean(dim=2,keepdim=True).mean(dim=3,keepdim=True)
            var = ((X-mean)**2).mean(dim=0,keepdim=True).mean(dim=2,keepdim=True).mean(dim=3,keepdim=True)
        X_hat = (X-mean) / torch.sqrt(var+eps)
        moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
        moving_var = momentum * moving_var + (1.0 - momentum) *var
    Y = gamma * X_hat + beta
    return Y,moving_mean,moving_var

class BatchNorm(nn.Module):
    def __init__(self,num_features,num_dims):
        super(BatchNorm,self).__init__()
        if num_dims == 2:
            shape = (1,num_features)
        else:
            shape = (1,num_features,1,1)
        self.gamma = nn.Parameter(torch.ones(shape))
        self.beta = nn.Parameter(torch.zeros(shape))
        self.moving_mean = torch.zeros(shape)
        self.moving_var = torch.zeros(shape)

    def forward(self,X):
        if self.moving_mean.device != X.device:
            self.moving_mean = self.moving_mean.to(X.device)
            self.moving_var = self.moving_var.to(X.device)
        Y,self.moving_mean,self.moving_var = batch_norm(self.training,X,self.gamma,self.beta,self.moving_mean,self.moving_var,eps=1e-5,momentum=0.9)
        return Y

class FlattenLayer(nn.Module):
    def __init__(self):
        super(FlattenLayer,self).__init__()
    def forward(self,x):
        return x.view(x.shape[0],-1)

def evaluate_accuracy(data_iter,net,device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')):
    acc_sum,n = 0.0,0
    with torch.no_grad():
        for X,y in data_iter:
            if isinstance(net,torch.nn.Module):
                net.eval()
                acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
                net.train()
            else:
                if('is_training' in net.__code__.co_varnames):
                    acc_sum += (net(X,is_training=False).argmax(dim=1) == y).float().sum().item()
                else:
                    acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
            n += y.shape[0]
    return acc_sum/n

def load_data_fashion_mnist(batch_size,resize=None,root='~/Datasets/FashionMNIST'):
    trans = []
    if resize:
        trans.append(torchvision.transforms.Resize(size=resize))
    trans.append(torchvision.transforms.ToTensor())

    transform = torchvision.transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(root=root,train=True,download=True,transform=transform)
    mnist_test = torchvision.datasets.FashionMNIST(root=root,train=False,download=True,transform=transform)

    train_iter = torch.utils.data.DataLoader(mnist_train,batch_size=batch_size,shuffle=True,num_workers=4)
    test_iter = torch.utils.data.DataLoader(mnist_test,batch_size=batch_size,shuffle=False,num_workers=4)

    return train_iter,test_iter

def train_ch5(net,train_iter,test_iter,batch_size,optimizer,device,num_epochs):
    net = net.to(device)
    print("training on ",device)
    loss = torch.nn.CrossEntropyLoss()
    batch_count = 0
    for epoch in range(num_epochs):
        train_l_sum,train_acc_sum,n,start = 0.0,0.0,0,time.time()
        for X,y in train_iter:
            X = X.to(device)
            y = y.to(device)
            y_hat = net(X)
            l = loss(y_hat,y)
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            train_l_sum += l.cpu().item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
            n += y.shape[0]
            batch_count += 1
        test_acc = evaluate_accuracy(test_iter,net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec' %(epoch+1,train_l_sum/batch_count,train_acc_sum/n,test_acc,time.time()-start))

net = nn.Sequential(nn.Conv2d(1,6,5),
                    nn.BatchNorm2d(6),
                    nn.Sigmoid(),
                    nn.MaxPool2d(2,2),
                    nn.Conv2d(6,16,5),
                    nn.BatchNorm2d(16),
                    nn.Sigmoid(),
                    nn.MaxPool2d(2,2),
                    FlattenLayer(),
                    nn.Linear(16*4*4,120),
                    nn.BatchNorm1d(120),
                    nn.Sigmoid(),
                    nn.Linear(120,84),
                    nn.BatchNorm1d(84),
                    nn.Sigmoid(),
                    nn.Linear(84,10))

batch_size = 256
train_iter,test_iter = load_data_fashion_mnist(batch_size=batch_size)

lr,num_epochs = 0.001,5
optimizer = torch.optim.Adam(net.parameters(),lr=lr)
train_ch5(net,train_iter,test_iter,batch_size,optimizer,device,num_epochs)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126

4.结果(训练速度更快)
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/凡人多烦事01/article/detail/606242
推荐阅读
相关标签
  

闽ICP备14008679号