当前位置:   article > 正文

为什么跑AI往往用GPU而不是CPU?

为什么跑AI往往用GPU而不是CPU?

今天,人工智能(AI)已经在各个领域遍地开花,无论身处哪个行业,使用AI来帮助获取业务洞察,并建立竞争优势,已经非常常见。

不过一个有趣的现象是,在用户采购AI基础设施时,几乎所有厂商都会强调其支持GPU的能力,并且支持的GPU数量越多,就代表其AI性能越强大。

那么问题来了,为什么是GPU而不是CPU

GPU难道不是我们日常使用的电脑里的,用于提高游戏性能或设计图形所需的图形处理单元吗?为什么在AI方面,我们计算机里的“大脑”(CPU)反而很少提及呢?


一、为什么AI需要GPU?

要了解为什么GPU更适合AI,我们就要从GPU的诞生说起。

图形处理单元 (GPU) 最初开发用于生成计算机图形,是具有专用内存的专用处理器,通常执行渲染图形所需的浮点运算。

从GPU的诞生我们可以看到,GPU是专为计算机开发的,旨在提高它们处理3D图形的能力。

这种特性决定了GPU仅用于参与任务或应用程序代码的某些部分,而不是整个过程。因此,GPU通常有较多的内核,用于处理频繁且彼此独立的简单计算。

而CPU又被称为通用处理器,因为它几乎可以运行任何类型的计算。

不过CPU通常只有几个内核,即使是服务器专用的CPU也不过几十个内核,与GPU动辄成百上千个内核相比完全不是一个数量级。

但这并不意味着CPU不够好,CPU内核虽然更少,但比数千个GPU内核更强大。例如同时处理操作系统、处理电子表格、播放高清视频、提取大型zip文件,这些是GPU根本无法完成的。

说到这里,你该明白GPU和CPU的区别了吧。

总结一下,CPU最擅长按顺序处理单个更复杂的计算,而GPU更擅长并行处理多个但更简单的计算。

至于为什么AI需要的GPU,答案也很明显了,因为训练AI模型的过程需要同时对所有数据样本执行几乎相同的操作,而GPU的架构设计具有快速同时处理多个任务所需的并行处理能力。

不过要注意的是,尽管GPU非常适合于AI模型算法,但并不意味着GPU在所有情况下都适用:

1、规模较小的训练

CPU完全可以执行训练AI模型所需的算法,特别是如果数据集规模相对较小,可以使用CPU避免高昂的前期成本。

2、非并行算法

本质上,GPU是为图形处理而设计的,因此当某个AI模型算法并不是并行算法时,CPU就是更好的选择。某些涉及逻辑或密集内存要求的AI算法也是CPU的强项。


二、GPU与AI计算

现在的AI计算,都在抢购GPU。英伟达也因此赚得盆满钵满,为什么会这样呢?

原因很简单,因为AI计算和图形计算一样,也包含了大量的高强度并行计算任务。

深度学习是目前最主流的人工智能算法。从过程来看,包括训练(training)和推理(inference)两个环节。

训练环节,通过投喂大量的数据,训练出一个复杂的神经网络模型。

在推理环节,利用训练好的模型,使用大量数据推理出各种结论。

训练环节由于涉及海量的训练数据,以及复杂的深度神经网络结构,所以需要的计算规模非常庞大,对芯片的算力性能要求比较高。

而推理环节,对简单指定的重复计算和低延迟的要求很高。

它们所采用的具体算法,包括矩阵相乘、卷积、循环层、梯度运算等,分解为大量并行任务,可以有效缩短任务完成的时间。

GPU凭借自身强悍的并行计算能力以及内存带宽,可以很好地应对训练和推理任务,已经成为业界在深度学习领域的首选解决方案。

目前,大部分企业的AI训练,采用的是英伟达的GPU集群。如果进行合理优化,一块GPU卡,可以提供相当于数十甚至上百台CPU服务器的算力。


三、AI与算力

AI与算力是当今社会科技进步的两大驱动力,它们的融合与创新正推动着各个行业的发展,引领我们进入一个全新的智能时代。

算力,作为AI技术的基石,为AI提供了强大的计算能力和数据处理能力。随着技术的不断进步,算力的提升使得AI模型能够处理更大规模的数据,实现更复杂的算法,从而提升AI的性能和准确度。

算力的发展,使得AI在图像识别、语音识别、自然语言处理等领域取得了巨大的突破,为我们的生活带来了诸多便利。

而AI的崛起,也反过来促进了算力的发展。随着AI应用领域的不断拓展,对于算力的需求也日益增长。为了满足这种需求,人们不断研发新的芯片、算法和架构,推动算力的不断提升。

同时,AI技术的发展也催生了一系列新的应用场景,如自动驾驶、智能家居、智能医疗等,这些应用都需要强大的算力支持,从而推动了算力技术的不断突破和创新。

AI与算力的结合,正在推动各行各业的发展。

在制造业中,AI与算力技术可以帮助企业实现智能制造、智能供应链等,提高生产效率和产品质量。

在医疗领域,AI与算力技术可以帮助医生实现精准诊断、个性化治疗等,提高医疗水平和患者满意度。

在金融领域,AI与算力技术可以帮助银行、保险等机构实现风险评估、智能投顾等,提高金融服务的智能化水平。

总之,AI与算力是当今科技进步的重要驱动力,它们的融合与创新正推动着我们进入一个全新的智能时代。在未来的发展中,我们需要不断关注技术趋势、加强人才培养、加强监管和规范,推动AI与算力技术的健康发展,为人类创造更加美好的未来。

本文来源:渲大师

END

欢迎加入Imagination GPU与人工智能交流2群

9b52019f57f6d9e1749e2469cb65a5e5.jpeg

入群请加小编微信:eetrend77

(添加请备注公司名和职称)

推荐阅读

对话Imagination中国区董事长:以GPU为支点加强软硬件协同,助力数

bf51e64f7cc5c1735f954278c245a5c4.png

资料下载 | Imagination APXM-6200:领先的性能密集型应用CPU


Imagination Technologies 是一家总部位于英国的公司,致力于研发芯片和软件知识产权(IP),基于Imagination IP的产品已在全球数十亿人的电话、汽车、家庭和工作 场所中使用。获取更多物联网、智能穿戴、通信、汽车电子、图形图像开发等前沿技术信息,欢迎关注 Imagination Tech!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/凡人多烦事01/article/detail/610180
推荐阅读
相关标签
  

闽ICP备14008679号