赞
踩
# 提示
def xxx():"""提示"""
# plot confusion matrix def xxx(): sns.
实现复杂功能时,需要人工引导,写到一半,来回按 Tab
Backspace
触发提示
直接一个注释搞定不太可能,除非是一些简单和常用的功能,如文件加载保存,对象转换,日期处理,常用函数等等
如果开启 Allow public code ,可能有版权问题
模型可能生成有 bug 的代码
import numpy as np import pandas as pd # get max 5 numbers from a list def get_max_5(list): return sorted(list, reverse=True)[:5] # train keras model with data def train_model(data): # split data into train and test train_data = data[:int(len(data) * 0.8)] test_data = data[int(len(data) * 0.8):] # get features and labels train_features = train_data.iloc[:, :-1].values train_labels = train_data.iloc[:, -1].values test_features = test_data.iloc[:, :-1].values test_labels = test_data.iloc[:, -1].values # reshape features train_features = train_features.reshape(train_features.shape[0], 1, train_features.shape[1]) test_features = test_features.reshape(test_features.shape[0], 1, test_features.shape[1]) # import keras # get VGG-19 model def get_model(): # import keras from keras.applications import VGG19 # confusion matrix def get_confusion_matrix(pred, true): # import sklearn from sklearn.metrics import confusion_matrix return confusion_matrix(pred, true) # get now time def get_now_time(): import datetime return datetime.datetime.now() # get now time in string format def get_now_time_str(): import datetime return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") # get BERT model keras def get_bert_model(): # import keras from keras.applications import BERT # plot heatmap with folium def plot_heatmap(data, title, filename): # import folium from folium import plugins from folium.plugins import HeatMap import folium import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # convert list to dataframe def list_to_df(list): return pd.DataFrame(list) # # add 1 to 1000 # def add_1_to_1000(): # for i in range(1000): # print(i + 1) # hash function def hash_function(str): import hashlib return hashlib.sha256(str.encode()).hexdigest() # TSP def tsp(data): import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import random import math import time import itertools import copy import matplotlib.pyplot as plt # crawl a web page def crawl_web(url): import requests return requests.get(url) # load keras model from pickle def load_model(filename): import pickle with open(filename, 'rb') as f: return pickle.load(f) # save keras model to pickle def save_model(model, filename): import pickle with open(filename, 'wb') as f: pickle.dump(model, f) # load keras model def load_keras_model(filename): import keras return keras.models.load_model(filename) # display audio def display_audio(filename): # load file file = open(filename, 'rb') # create an audio object audio = AudioSegment.from_file(file) # play the audio play(audio) # plot heatmap def plot_heatmap(data): import seaborn as sns import matplotlib.pyplot as plt plt.figure() sns.heatmap(data, cmap='Blues', annot=True, fmt='.2f') plt.show() # create a random numpy array def create_random_numpy_array(shape): return np.random.rand(*shape) # baidu url url = 'https://www.baidu.com' # main function if __name__ == "__main__": data = create_random_numpy_array(shape=(2, 3)) plot_heatmap(data)
全程只导入基本的包、打注释和改一些小瑕疵
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn.model_selection as skl_ms
import xgboost as xgb
# load iris data from sklearn from sklearn.datasets import load_iris iris = load_iris() X = iris.data y = iris.target # split train test data X_train, X_test, y_train, y_test = skl_ms.train_test_split(X, y, test_size=0.2, random_state=0) # train a xgb model CV xgb_model = xgb.XGBClassifier() xgb_model.fit(X_train, y_train) # train a xgb model with a gridsearch parameters = {'max_depth': [3, 4, 5], 'learning_rate': [0.1, 0.05, 0.02], 'n_estimators': [50, 100, 200]} xgb_gridsearch = skl_ms.GridSearchCV(xgb_model, parameters, cv=5) xgb_gridsearch.fit(X_train, y_train) print(xgb_gridsearch.best_params_) print(xgb_gridsearch.best_score_) # plot a confusion matrix from sklearn.metrics import confusion_matrix y_pred = xgb_gridsearch.predict(X_test) cm = confusion_matrix(y_test, y_pred) plt.figure(figsize=(10,7)) plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) plt.title("Confusion Matrix") plt.colorbar() plt.ylabel('True label') plt.xlabel('Predicted label') tick_marks = np.arange(3) plt.xticks(tick_marks, ['setosa', 'versicolor', 'virginica'], rotation=45) plt.yticks(tick_marks, ['setosa', 'versicolor', 'virginica']) plt.show()
# plot xgb feature importance
importance = xgb_gridsearch.best_estimator_.feature_importances_
feature_names = iris.feature_names
feature_importance = pd.DataFrame({'feature': feature_names, 'importance': importance})
feature_importance = feature_importance.sort_values('importance', ascending=False)
plt.figure(figsize=(10,7))
plt.barh(range(len(feature_importance)), feature_importance.importance, align='center')
plt.yticks(range(len(feature_importance)), feature_importance.feature)
plt.xlabel('Importance')
plt.ylabel('Feature')
plt.title('XGBoost Feature Importance')
plt.show()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。