赞
踩
spark streaming 这种构建在微批处理上的流计算引擎,比较突出的问题就是处理延时较高(无法优化到秒以下的数量级),以及无法支持基于 event_time 的时间窗口做聚合逻辑。
spark 在 2.0 版本中发布了新的流计算的 API,Structured Streaming/结构化流。
Structured Streaming 是一个基于 Spark SQL 引擎的可扩展、容错的流处理引擎。统一了流、批的编程模型,你可以使用静态数据批处理一样的方式来编写流式计算操作。并且支持基于 event_time 的时间窗口的处理逻辑。
随着数据不断地到达,Spark 引擎会以一种增量的方式来执行这些操作,并且持续更新结算结果。可以使用 Scala、Java、Python 或 R 中的 DataSet/DataFrame API 来表示流聚合、事件时间窗口、流到批连接等。此外,Structured Streaming 会通过 checkpoint 和预写日志等机制来实现 Exactly-Once 语义。
简单来说,对于开发人员来说,根本不用去考虑是流式计算,还是批处理,只要使用同样的方式来编写计算操作即可,Structured Streaming 提供了快速、可扩展、容错、端到端的一次性流处理,而用户无需考虑更多细节。
默认情况下,结构化流式查询使用微批处理引擎进行处理,该引擎将数据流作为一系列小批处理作业进行处理,从而实现端到端的延迟,最短可达 100 毫秒,并且完全可以保证一次容错。自 Spark 2.3 以来,引入了一种新的低延迟处理模式,称为连续处理,它可以在至少一次保证的情况下实现低至 1 毫秒的端到端延迟。也就是类似于 Flink 那样的实时流,而不是小批量处理。实际开发可以根据应用程序要求选择处理模式,但是连续处理在使用的时候仍然有很多限制,目前大部分情况还是应该采用小批量模式。
Spark Streaming 时代 -DStream-RDD
Spark Streaming 采用的数据抽象是 DStream,而本质上就是时间上连续的 RDD,对数据流的操作就是针对 RDD 的操作。
Structured Streaming 时代 - DataSet/DataFrame -RDD
Structured Streaming 是 Spark2.0 新增的可扩展和高容错性的实时计算框架,它构建于 Spark SQL 引擎,把流式计算也统一到 DataFrame/Dataset 里去了。
Structured Streaming 相比于 Spark Streaming 的进步就类似于 Dataset 相比于 RDD 的进步。
Structured Streaming 最核心的思想就是将实时到达的数据看作是一个不断追加的 unbound table 无界表,到达流的每个数据项(RDD)就像是表中的一个新行被附加到无边界的表中.这样用户就可以用静态结构化数据的批处理查询方式进行流计算,如可以使用 SQL 对到来的每一行数据进行实时查询处理。
Structured Streaming 将数据源映射为类似于关系数据库中的表,然后将经过计算得到的结果映射为另一张表,完全以结构化的方式去操作流式数据,这种编程模型非常有利于处理分析结构化的实时数据;
import org.apache.spark.SparkContext import org.apache.spark.sql.streaming.Trigger import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession} object WordCount { def main(args: Array[String]): Unit = { //1.创建SparkSession,因为StructuredStreaming的数据模型也是DataFrame/DataSet val spark: SparkSession = SparkSession.builder().master("local[*]").appName("SparkSQL").getOrCreate() val sc: SparkContext = spark.sparkContext sc.setLogLevel("WARN") //2.接收数据 val dataDF: DataFrame = spark.readStream .option("host", "node01") .option("port", 9999) .format("socket") .load() //3.处理数据 import spark.implicits._ val dataDS: Dataset[String] = dataDF.as[String] val wordDS: Dataset[String] = dataDS.flatMap(_.split(" ")) val result: Dataset[Row] = wordDS.groupBy("value").count().sort($"count".desc) //result.show() //Queries with streaming sources must be executed with writeStream.start(); result.writeStream .format("console")//往控制台写 .outputMode("complete")//每次将所有的数据写出 .trigger(Trigger.ProcessingTime(0))//触发时间间隔,0表示尽可能的快 //.option("checkpointLocation","./ckp")//设置checkpoint目录,socket不支持数据恢复,所以第二次启动会报错,需要注掉 .start()//开启 .awaitTermination()//等待停止 } }
import org.apache.spark.SparkContext import org.apache.spark.sql.streaming.Trigger import org.apache.spark.sql.types.StructType import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession} /** * {"name":"json","age":23,"hobby":"running"} * {"name":"charles","age":32,"hobby":"basketball"} * {"name":"tom","age":28,"hobby":"football"} * {"name":"lili","age":24,"hobby":"running"} * {"name":"bob","age":20,"hobby":"swimming"} * 统计年龄小于25岁的人群的爱好排行榜 */ object WordCount2 { def main(args: Array[String]): Unit = { //1.创建SparkSession,因为StructuredStreaming的数据模型也是DataFrame/DataSet val spark: SparkSession = SparkSession.builder().master("local[*]").appName("SparkSQL").getOrCreate() val sc: SparkContext = spark.sparkContext sc.setLogLevel("WARN") val Schema: StructType = new StructType() .add("name","string") .add("age","integer") .add("hobby","string") //2.接收数据 import spark.implicits._ // Schema must be specified when creating a streaming source DataFrame. val dataDF: DataFrame = spark.readStream.schema(Schema).json("D:\\data\\spark\\data") //3.处理数据 val result: Dataset[Row] = dataDF.filter($"age" < 25).groupBy("hobby").count().sort($"count".desc) //4.输出结果 result.writeStream .format("console") .outputMode("complete") .trigger(Trigger.ProcessingTime(0)) .start() .awaitTermination() } }
获得到 Source 之后的基本数据处理方式和之前学习的 DataFrame、DataSet 一致,不再赘述。
官网示例代码:
case class DeviceData(device: String, deviceType: String, signal: Double, time: DateTime)
val df: DataFrame = ... // streaming DataFrame with IOT device data with schema { device: string, deviceType: string, signal: double, time: string }
val ds: Dataset[DeviceData] = df.as[DeviceData] // streaming Dataset with IOT device data
// Select the devices which have signal more than 10
df.select("device").where("signal > 10") // using untyped APIs
ds.filter(_.signal > 10).map(_.device) // using typed APIs
// Running count of the number of updates for each device type
df.groupBy("deviceType").count() // using untyped API
// Running average signal for each device type
import org.apache.spark.sql.expressions.scalalang.typed
ds.groupByKey(_.deviceType).agg(typed.avg(_.signal)) // using typed API
计算结果可以选择输出到多种设备并进行如下设定:
1、output mode:以哪种方式将 result table 的数据写入 sink,即是全部输出 complete 还是只输出新增数据;
2、format/output sink 的一些细节:数据格式、位置等。如 console;
3、query name:指定查询的标识。类似 tempview 的名字;
4、trigger interval:触发间隔,如果不指定,默认会尽可能快速地处理数据;
5、checkpointLocation:一般是 hdfs 上的目录。注意:Socket 不支持数据恢复,如果设置了,第二次启动会报错,Kafka 支持。
output mode:
每当结果表更新时,我们都希望将更改后的结果行写入外部接收器。
这里有三种输出模型:
1、Append mode:默认模式,新增的行才输出,每次更新结果集时,只将新添加到结果集的结果行输出到接收器。仅支持那些添加到结果表中的行永远不会更改的查询。因此,此模式保证每行仅输出一次。例如,仅查询 select,where,map,flatMap,filter,join 等会支持追加模式。不支持聚合
2、Complete mode:所有内容都输出,每次触发后,整个结果表将输出到接收器。聚合查询支持此功能。仅适用于包含聚合操作的查询。
3、Update mode:更新的行才输出,每次更新结果集时,仅将被更新的结果行输出到接收器(自 Spark 2.1.1 起可用),不支持排序
说明:
File sink:输出存储到一个目录中。支持 parquet 文件,以及 append 模式。
writeStream
.format("parquet") // can be "orc", "json", "csv", etc.
.option("path", "path/to/destination/dir")
.start()
Kafka sink:将输出存储到 Kafka 中的一个或多个 topics 中。
writeStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("topic", "updates")
.start()
Foreach sink:对输出中的记录运行任意计算
writeStream
.foreach(...)
.start()
Console sink:将输出打印到控制台
writeStream
.format("console")
.start()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。