当前位置:   article > 正文

你真的懂Spark SQL架构的工作原理么?_spark sql快速的计算效率得益于()。acatalystbexecutioncparserda

spark sql快速的计算效率得益于()。acatalystbexecutioncparserdanalyzer

Spark SQL兼容Hive,这是因为Spark SQL架构与Hive底层结构相似,Spark SQL复用了Hive提供的元数据仓库(Metastore)、HiveQL、用户自定义函数(UDF)以及序列化和反序列工具(SerDes),下面通过图1深入了解Spark SQL底层架构。

在这里插入图片描述
可以看出,Spark SQL架构与Hive架构相比,除了把底层的MapReduce执行引擎更改为Spark,还修改了Catalyst优化器,Spark SQL快速的计算效率得益于Catalyst优化器。从HiveQL被解析成语法抽象树起,执行计划生成和优化的工作全部交给Spark SQL的Catalyst优化器进行负责和管理。

Catalyst优化器是一个新的可扩展的查询优化器,它是基于Scala函数式编程结构,Spark SQL开发工程师设计可扩展架构主要是为了在今后的版本迭代时,能够轻松地添加新的优化技术和功能,尤其是为了解决大数据生产环境中遇到的问题(例如,针对半结构化数据和高级数据分析),另外,Spark作为开源项目,外部开发人员可以针对项目需求自行扩展Catalyst优化器的功能。下面通过图2描述Spark SQL的工作原理。
在这里插入图片描述
Spark要想很好地支持SQL,就需要完成解析(Parser)、优

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/凡人多烦事01/article/detail/656959
推荐阅读
相关标签
  

闽ICP备14008679号