当前位置:   article > 正文

YOLOV8 安全帽佩戴检测(含训练好的模型和训练集)免费下载_yolov8 安全帽模型下载

yolov8 安全帽模型下载

四步教你完成YOLO v8 安全帽检测!!!

(首先你自己有python 3.7及以上版本)

第一步:pip install ultralytics

C:\Users\Administrator>pip install ultralytics
Collecting ultralytics
  Downloading ultralytics-8.0.151-py3-none-any.whl (616 kB)
     |████████████████████████████████| 616 kB 12 kB/s
Requirement already satisfied: pillow>=7.1.2 in c:\python\python37\lib\site-packages (from ultralytics) (8.1.1)
Requirement already satisfied: scipy>=1.4.1 in c:\python\python37\lib\site-packages (from ultralytics) (1.6.1)
Collecting opencv-python>=4.6.0
  Downloading opencv_python-4.9.0.80-cp37-abi3-win_amd64.whl (38.6 MB)
     |                                | 40 kB 9.5 kB/s eta 1:07:27

第二步:pip freeze 

确保安装完成ultralytics库

ultralytics==8.0.145
urllib3==1.26.3

第三步:运行 yolo_train.py

D:\==\safehat>python yolo_train.py
Ultralytics YOLOv8.0.145  Python-3.7.2 torch-1.8.0+cpu CPU (AMD E2-3200 APU with Radeon(tm) HD Graphics)
WARNING  Upgrade to torch>=2.0.0 for deterministic training.
engine\trainer: task=detect, mode=train, model=yolov8n.pt, data=safehat.yaml, epochs=100, patience=50, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=None, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, vid_stride=1, line_width=None, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, tracker=botsort.yaml, save_dir=runs\detect\train

=====================

yolo_train.py代码如下:

from ultralytics import YOLO

model = YOLO('yolov8n.pt') #加载模型

model.train(data = 'safehat.yaml',epochs=1)

model.val()

======================

训练完成后,会在train文件下生成weight文件夹,下面有两个文件best.pt和 last.pt

第四步:运行# python yolo_test.py

=====================

yolo_test.py代码如下:

from ultralytics import YOLO

model = YOLO('best.pt')

model.predict( '1.jpg', save = True)

model.predict( '2.jpg', save = True)
model.predict('3.jpg',save = True, classes = [0, 2], line_width = 30)

#model.predict('myself2.jpg',save = True, classes = [0, 2], line_width = 30)

======================

会在runs文件夹下生成结果图片

============================================

2024.2.28更新训练结果

===========================================

==================================================

注意:文件目录下,一定有以下几个文件,特别是红框标准:

不然运行会报错!!!

===================================================

训练好的模型与代码集

如下:

========================================

2024.2.28更新训练集下载链接:

https://www.kaggle.com/datasets/snehilsanyal/construction-site-safety-image-dataset-roboflow

===========================================

 参考文章链接如下;

基于yolov8,训练一个安全帽佩戴的目标检测模型

=================2024.2.29 1个积分下载链接=======================

为了方便大家,特提供下载链接(1积分)

https://download.csdn.net/download/paul123456789io/88888856

============================================================

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/凡人多烦事01/article/detail/668451
推荐阅读
  

闽ICP备14008679号