赞
踩
算法设计与分析--求最大子段和问题
问题描述:
给定由n个整数组成的序列(a1,a2, …,an),求该序列形如
的子段和的最大值,当所有整数均为负整数时,其最大子段和为0。
利用蛮力法求解:
- int maxSum(int a[],int n)
- {
- int maxSum = 0;
- int sum = 0;
- for(int i = 0; i < n; i++) //从第一个数开始算起
- {
- for(int j = i + 1; j < n; j++)//从i的第二个数开始算起
- {
- sum = a[i];
- a[i] += a[j];
- if(a[i] > sum)
- {
- sum = a[i]; //每一趟的最大值
- }
- }
- if(sum > maxSum)
- {
- maxSum = sum;
- }
-
- }
- return maxSum;
- }
利用分治法求解:
- int maxSum(int a[],int left, int right)
- {
- int sum = 0;
- if(left == right) //如果序列长度为1,直接求解
- {
- if(a[left] > 0) sum = a[left];
- else sum = 0;
- }
- else
- {
- int center = (left + right) / 2; //划分
- int leftsum = maxSum(a,left,center); //对应情况1,递归求解
- int rightsum = maxSum(a, center + 1, right);//对应情况2, 递归求解
- int s1 = 0;
- int lefts = 0;
- for(int i = center; i >= left; i--) //求解s1
- {
- lefts += a[i];
- if(lefts > s1) s1 = lefts; //左边最大值放在s1
- }
- int s2 = 0;
- int rights = 0;
- for(int j = center + 1; j <= right; j++)//求解s2
- {
- rights += a[j];
- if(rights > s2) s2 =rights;
- }
- sum = s1 + s2; //计算第3钟情况的最大子段和
- if(sum < leftsum) sum = leftsum; //合并,在sum、leftsum、rightsum中取最大值
- if(sum < rightsum) sum = rightsum;
- }
- return sum;
- }
利用动态规划法求解:
- int DY_Sum(int a[],int n)
- {
- int sum = 0;
- int *b = (int *) malloc(n * sizeof(int)); //动态为数组分配空间
- b[0] = a[0];
- for(int i = 1; i < n; i++)
- {
- if(b[i-1] > 0)
- b[i] = b[i - 1] + a[i];
- else
- b[i] = a[i];
- }
- for(int j = 0; j < n; j++)
- {
- if(b[j] > sum)
- sum = b[j];
- }
- delete []b; //释放内存
- return sum;
- }
完整测试程序:
- #include<iostream>
- #include<time.h>
- #include<Windows.h>
- using namespace std;
- #define MAX 10000
-
- int BF_Sum(int a[],int n)
- {
- int max=0;
- int sum=0;
- int i,j;
- for (i=0;i<n-1;i++)
- {
- sum=a[i];
- for(j=i+1;j<n;j++)
- {
- if(sum>=max)
- {
- max=sum;
- }
- sum+=a[j];
- }
- }
- return max;
- }
- int maxSum1(int a[],int left, int right)
- {
- int sum = 0;
- if(left == right) //如果序列长度为1,直接求解
- {
- if(a[left] > 0) sum = a[left];
- else sum = 0;
- }
- else
- {
- int center = (left + right) / 2; //划分
- int leftsum = maxSum1(a,left,center); //对应情况1,递归求解
- int rightsum = maxSum1(a, center + 1, right);//对应情况2, 递归求解
- int s1 = 0;
- int lefts = 0;
- for(int i = center; i >= left; i--) //求解s1
- {
- lefts += a[i];
- if(lefts > s1) s1 = lefts; //左边最大值放在s1
- }
- int s2 = 0;
- int rights = 0;
- for(int j = center + 1; j <= right; j++)//求解s2
- {
- rights += a[j];
- if(rights > s2) s2 =rights;
- }
- sum = s1 + s2; //计算第3钟情况的最大子段和
- if(sum < leftsum) sum = leftsum; //合并,在sum、leftsum、rightsum中取最大值
- if(sum < rightsum) sum = rightsum;
- }
- return sum;
- }
-
- int DY_Sum(int a[],int n)
- {
- int sum = 0;
- int *b = (int *) malloc(n * sizeof(int)); //动态为数组分配空间
- b[0] = a[0];
- for(int i = 1; i < n; i++)
- {
- if(b[i-1] > 0)
- b[i] = b[i - 1] + a[i];
- else
- b[i] = a[i];
- }
- for(int j = 0; j < n; j++)
- {
- if(b[j] > sum)
- sum = b[j];
- }
- delete []b; //释放内存
- return sum;
- }
-
- int main()
- {
- int num[MAX];
- int i;
- const int n = 40;
- LARGE_INTEGER begin,end,frequency;
- QueryPerformanceFrequency(&frequency);
- //生成随机序列
- cout<<"生成随机序列:";
- srand(time(0));
- for(int i = 0; i < n; i++)
- {
- if(rand() % 2 == 0)
- num[i] = rand();
- else
- num[i] = (-1) * rand();
- if(n < 100)
- cout<<num[i]<<" ";
- }
- cout<<endl;
-
- //蛮力法//
- cout<<"\n蛮力法:"<<endl;
- cout<"最大字段和:";
- QueryPerformanceCounter(&begin);
- cout<<BF_Sum(num,n)<<endl;
- QueryPerformanceCounter(&end);
- cout<<"时间:"
- <<(double)(end.QuadPart - begin.QuadPart) / frequency.QuadPart
- <<"s"<<endl;
-
- cout<<"\n分治法:"<<endl;
- cout<"最大字段和:";
- QueryPerformanceCounter(&begin);
- cout<<maxSum1(num,0,n)<<endl;
- QueryPerformanceCounter(&end);
- cout<<"时间:"
- <<(double)(end.QuadPart - begin.QuadPart) / frequency.QuadPart
- <<"s"<<endl;
-
- cout<<"\n动态规划法:"<<endl;
- cout<"最大字段和:";
- QueryPerformanceCounter(&begin);
- cout<<DY_Sum(num,n)<<endl;
- QueryPerformanceCounter(&end);
- cout<<"时间:"
- <<(double)(end.QuadPart - begin.QuadPart) / frequency.QuadPart
- <<"s"<<endl;
-
- system("pause");
- return 0;
- }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。