赞
踩
假设恰有两个多边形,它们都是凸的,其顶点以逆时针顺序给出,并且具有非零区域。此外,在一个多边形中,顶点不会在另一个多边形的两侧。如下图所示:
#include <iostream> #include <vector> #include <math.h> using namespace std; const double FLOAT_EPS = 1e-10; class Point { /** * Point coordinate information */ public: Point(const double x = 0, const double y = 0, const double z = 0):_x(x), _y(y) {} Point(const Point& p) : _x( p.getX() ), _y( p.getY() ) {;} ~Point() {} const double getX() const {return _x;} const double getY() const {return _y;} void setX(const double x) {_x = x;} void setY(const double y) {_y = y;} private: double _x, _y; }; double cross(const Point& p, const Point& q, const Point& r) { return (p.getX() - q.getX()) * (r.getY() - q.getY()) - (p.getY() - q.getY()) * (r.getX() - q.getX()); } // line segment p-q intersect with line A-B void lineIntersectSeg(const Point& p, const Point& q, const Point& A, const Point& B, Point& res) { double a = B.getY() - A.getY(); double b = A.getX() - B.getX(); double c = B.getX() * A.getY() - A.getX() * B.getY(); double u = fabs(a * p.getX() + b * p.getY() + c); double v = fabs(a * q.getX() + b * q.getY() + c); res.setX((p.getX()*v + q.getX()*u)/(u+v)); res.setY((p.getY()*v + q.getY()*u)/(u+v)); } void cutPolygon(const Point& a, const Point& b, const vector<Point>& Q, vector<Point>& res) { for(unsigned int i = 0; i < Q.size(); i++) { double left1 = cross(a, b, Q[i]), left2 = 0.0; if(i != (int)Q.size()-1) { left2 = cross(a, b, Q[i+1]); } if(left1 > -FLOAT_EPS) { res.push_back(Q[i]); } if(left1 * left2 < -FLOAT_EPS) { Point p(0.0, 0.0); lineIntersectSeg(Q[i], Q[i+1], a, b, p); res.push_back(p); } } if(res.empty()) { return ; } if(fabs(res.back().getX() - res.front().getX()) > FLOAT_EPS || fabs(res.back().getY() - res.front().getY()) > FLOAT_EPS) { res.push_back(res.front()); } } double area(const vector<Point> & pts) { if(pts.empty()) { return 0.0; } double result = 0.0; for(unsigned int i = 0; i< pts.size()-1; ++i) { result += (pts[i].getX() * pts[i+1].getY() - pts[i].getY() * pts[i+1].getX()); } return fabs(result)/2.0; } double intersectArea(const vector<Point>& polys1, const vector<Point>& polys2) { vector<Point> pts1 = polys1; vector<Point> pts2 = polys2; pts1.push_back(pts1[0]); pts2.push_back(pts2[0]); vector<Point> res; for(unsigned int i = 0; i < polys2.size(); ++i) { res.clear(); cutPolygon(pts2[i + 1], pts2[i], pts1, res); pts1 = res; } return area(res); }
可以参考网址 :Condeforces-J
Input
The first line of the input will be a single integer T, the number of test cases (1 ≤ T ≤ 20). each test case contains two integers (3 ≤ N, M ≤ 40) Then a line contains N pairs of integers xi, yi (-1000 ≤ xi, yi ≤ 1000) coordinates of the ith vertex of polygon A, followed by a line contains M pairs of integers xj, yj (-1000 ≤ xj, yj ≤ 1000) coordinates of the jth vertex of polygon B. The coordinates are separated by a single space.
Output
For each test case, print on a single line, a single number representing the area of intersection, rounded to four decimal places.
Examples
input
2
5 3
0 3 1 1 3 1 3 5 1 5
1 3 5 3 3 6
3 3
-1 -1 -2 -1 -1 -2
1 1 2 1 1 2
output
2.6667
0.0000
#include <iostream> #include <vector> #include <math.h> using namespace std; const double FLOAT_EPS = 1e-10; class Point { /** * Point coordinate information */ public: Point(const double x = 0, const double y = 0, const double z = 0):_x(x), _y(y) {} Point(const Point& p) : _x( p.getX() ), _y( p.getY() ) {;} ~Point() {} const double getX() const {return _x;} const double getY() const {return _y;} void setX(const double x) {_x = x;} void setY(const double y) {_y = y;} private: double _x, _y; }; double cross(const Point& p, const Point& q, const Point& r) { return (p.getX() - q.getX()) * (r.getY() - q.getY()) - (p.getY() - q.getY()) * (r.getX() - q.getX()); } // line segment p-q intersect with line A-B void lineIntersectSeg(const Point& p, const Point& q, const Point& A, const Point& B, Point& res) { double a = B.getY() - A.getY(); double b = A.getX() - B.getX(); double c = B.getX() * A.getY() - A.getX() * B.getY(); double u = fabs(a * p.getX() + b * p.getY() + c); double v = fabs(a * q.getX() + b * q.getY() + c); res.setX((p.getX()*v + q.getX()*u)/(u+v)); res.setY((p.getY()*v + q.getY()*u)/(u+v)); } void cutPolygon(const Point& a, const Point& b, const vector<Point>& Q, vector<Point>& res) { for(unsigned int i = 0; i < Q.size(); i++) { double left1 = cross(a, b, Q[i]), left2 = 0.0; if(i != (int)Q.size()-1) { left2 = cross(a, b, Q[i+1]); } if(left1 > -FLOAT_EPS) { res.push_back(Q[i]); } if(left1 * left2 < -FLOAT_EPS) { Point p(0.0, 0.0); lineIntersectSeg(Q[i], Q[i+1], a, b, p); res.push_back(p); } } if(res.empty()) { return ; } if(fabs(res.back().getX() - res.front().getX()) > FLOAT_EPS || fabs(res.back().getY() - res.front().getY()) > FLOAT_EPS) { res.push_back(res.front()); } } double area(const vector<Point> & pts) { if(pts.empty()) { return 0.0; } double result = 0.0; for(unsigned int i = 0; i< pts.size()-1; ++i) { result += (pts[i].getX() * pts[i+1].getY() - pts[i].getY() * pts[i+1].getX()); } return fabs(result)/2.0; } double intersectArea(const vector<Point>& polys1, const vector<Point>& polys2) { vector<Point> pts1 = polys1; vector<Point> pts2 = polys2; pts1.push_back(pts1[0]); pts2.push_back(pts2[0]); vector<Point> res; for(unsigned int i = 0; i < polys2.size(); ++i) { res.clear(); cutPolygon(pts2[i + 1], pts2[i], pts1, res); pts1 = res; } return area(res); } int main() { int t; scanf("%d", &t); while(t--) { int n, m; scanf("%d %d", &n, &m); vector<Point> p, q; for(int i = 0; i < n; i++) { int a, b; scanf("%d %d", &a, &b); p.push_back(Point(a, b)); } for(int i = 0; i < m; i++) { int a, b; scanf("%d %d", &a, &b); q.push_back(Point(a, b)); } printf("%.4f\n", intersectArea(p, q)); } return 0; }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。