赞
踩
知识点1、ResNet 的关键结构
知识的2、定义重复使用的小函数
知识点3、函数结构微调
知识点4、实现bottleneck
知识点5、跟踪图像长宽的技巧
知识点1
ResNet的结构就像是 自动控制原理 中的前馈结构,这里称为bottleneck,用于减缓梯度消失的问题
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from torch.autograd import Variable
from torchvision.datasets import CIFAR10
知识点2
把后面会多次重复使用的函数定义为更简洁的模式
def conv3x3(in_channels, out_channels, stride=1):
return nn.Conv2d(in_channels, out_channels, 3, stride=stride, padding=1, bias=False)
知识点3
技巧1 学一下,通过不同的same_shape实现对结构的微调
知识点4
ResNet 最大的特点就是bottleneck的结构,在程序中只是用了F.relu(x+out, True)就可以实现了
class residual_block(nn.Module): def __init__(self, in_channel, out_channel, same_shape=True): super(residual_block, self).__init__() self.same_shape = same_shape # 技巧1 stride=1 if self.same_shape else 2 self.conv1 = conv3x3(in_channel, out_channel, stride=stride) self.bn1 = nn.BatchNorm2d(out_channel) self.conv2 = conv3x3(out_channel, out_channel) self.bn2 = nn.BatchNorm2d(out_channel) if not self.same_shape: self.conv3 = nn.Conv2d(in_channel, out_channel, 1, stride=stride) def forward(self, x): out = self.conv1(x) out = F.relu(self.bn1(out), True) out = self.conv2(out) out = F.relu(self.bn2(out), True) if not self.same_shape: x = self.conv3(x) return F.relu(x+out, True) # 点睛之笔
验证
test_net = residual_block(32, 32, False)
test_x = Variable(torch.zeros(1, 32, 96, 96))
print('input: {}'.format(test_x.shape))
test_y = test_net(test_x)
print('output: {}'.format(test_y.shape))
知识点5
定义一个verbose 当为True的时候,输出图像的长宽,以便分析
class resnet(nn.Module): def __init__(self, in_channel, num_class, verbose=False): super(resnet, self).__init__() self.verbose = verbose # 技巧 self.block1 = nn.Conv2d(in_channel, 64, 7, 2) self.block2 = nn.Sequential( nn.MaxPool2d(3,2), residual_block(64, 64), residual_block(64, 64) ) self.block3 = nn.Sequential( residual_block(64, 128, False), residual_block(128, 128) ) self.block4 = nn.Sequential( residual_block(128, 256, False), residual_block(256, 256) ) self.block5 = nn.Sequential( residual_block(256, 512, False), residual_block(512, 512), nn.AvgPool2d(3) ) self.classifier = nn.Linear(512, num_class) def forward(self, x): x = self.block1(x) if self.verbose: print('block 1 output: {}'.format(x.shape)) x = self.block2(x) if self.verbose: print('block 2 output: {}'.format(x.shape)) x = self.block3(x) if self.verbose: print('block 3 output: {}'.format(x.shape)) x = self.block4(x) if self.verbose: print('block 4 output: {}'.format(x.shape)) x = self.block5(x) if self.verbose: print('block 5 output: {}'.format(x.shape)) x = x.view(x.shape[0], -1) x = self.classifier(x) return x
验证
test_net = resnet(3, 10, True)
test_x = Variable(torch.zeros(1, 3, 96, 96))
test_y = test_net(test_x)
print('output: {}'.format(test_y.shape))
基操,不多BB了
def data_tf(x): x = x.resize((96, 96), 2) x = np.array(x, dtype='float32') / 255 x = (x - 0.5) / 0.5 x = x.transpose((2, 0, 1)) x = torch.from_numpy(x) return x from torch.utils.data import DataLoader from jc_utils import train train_set = CIFAR10('./data', train=True, transform=data_tf) train_data = DataLoader(train_set, batch_size=64, shuffle=True) test_set = CIFAR10('./data', train=False, transform=data_tf) test_data = DataLoader(test_set, batch_size=128, shuffle=False) net = resnet(3, 10) optimizer = torch.optim.SGD(net.parameters(), lr=0.01) criterion = nn.CrossEntropyLoss() train(net, train_data, test_data, 20, optimizer, criterion)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。