当前位置:   article > 正文

VGG-传统神经网络之巅峰

vgg

1. VGG简介

VGGNet是由牛津大学视觉几何小组(Visual Geometry Group, VGG)提出的一种深层卷积网络结构,他们以7.32%的错误率赢得了2014年ILSVRC分类任务的亚军(冠军由GoogLeNet以6.65%的错误率夺得)和25.32%的错误率夺得定位任务(Localization)的第一名(GoogLeNet错误率为26.44%),网络名称VGGNet取自该小组名缩写。VGGNet是首批把图像分类的错误率降低到10%以内模型,同时该网络所采用的 3 × 3 3\times3 3×3卷积核的思想是后来许多模型的基础,该模型发表在2015年国际学习表征会议(International Conference On Learning Representations, ICLR)后至今被引用的次数已经超过1万4千余次。

2. 模型结构

在这里插入图片描述
在原论文中的VGGNet包含了6个版本的演进,分别对应VGG11、VGG11-LRN、VGG13、VGG16-1、VGG16-3和VGG19,不同的后缀数值表示不同的网络层数(VGG11-LRN表示在第一层中采用了LRN的VGG11,VGG16-1表示后三组卷积块中最后一层卷积采用卷积核尺寸为 1 × 1 1\times1 1×1,相应的VGG16-3表示卷积核尺寸为 3 × 3 3\times3 3×3),本节介绍的VGG16为VGG16-3。图中的VGG16体现了VGGNet的核心思路,使用 3 × 3 3\times3 3×3的卷积组合代替大尺寸的卷积(2个 3 × 3 卷 积 即 可 与 3\times3卷积即可与 3×3 5 × 5 5\times5 5×5卷积拥有相同的感受视野),网络参数设置如表所示。

网络层输入尺寸核尺寸输出尺寸参数个数
卷积层 C 11 C_{11} C11 224 × 224 × 3 224\times224\times3 224×224×3 3 × 3 × 64 / 1 3\times3\times64/1 3×3×64/1 224 × 224 × 64 224\times224\times64 224×224×64 ( 3 × 3 × 3 + 1 ) × 64 (3\times3\times3+1)\times64 (3×3×3+1)×64
卷积层 C 12 C_{12} C12 224 × 224 × 64 224\times224\times64 224×224×64 3 × 3 × 64 / 1 3\times3\times64/1 3×3×64/1 224 × 224 × 64 224\times224\times64 224×224×64 ( 3 × 3 × 64 + 1 ) × 64 (3\times3\times64+1)\times64 (3×3×64+1)×64
下采样层 S m a x 1 S_{max1} Smax1 224 × 224 × 64 224\times224\times64 224×224×64 2 × 2 / 2 2\times2/2 2×2/2 112 × 112 × 64 112\times112\times64 112×112×64 0 0 0
卷积层 C 21 C_{21} C21 112 × 112 × 64 112\times112\times64 112×112×64 3 × 3 × 128 / 1 3\times3\times128/1 3×3×128/1 112 × 112 × 128 112\times112\times128 112×112×128 ( 3 × 3 × 64 + 1 ) × 128 (3\times3\times64+1)\times128 (3×3×64+1)×128
卷积层 C 22 C_{22} C22 112 × 112 × 128 112\times112\times128 112×112×128 3 × 3 × 128 / 1 3\times3\times128/1 3×3×128/1 112 × 112 × 128 112\times112\times128 112×112×128 ( 3 × 3 × 128 + 1 ) × 128 (3\times3\times128+1)\times128 (3×3×128+1)×128
下采样层 S m a x 2 S_{max2} Smax2 112 × 112 × 128 112\times112\times128 112×112×128 2 × 2 / 2 2\times2/2 2×2/2 56 × 56 × 128 56\times56\times128 56×56×128 0 0 0
卷积层 C 31 C_{31} C31 56 × 56 × 128 56\times56\times128 56×56×128 3 × 3 × 256 / 1 3\times3\times256/1 3×3×256/1 56 × 56 × 256 56\times56\times256 56×56×256 ( 3 × 3 × 128 + 1 ) × 256 (3\times3\times128+1)\times256 (3×3×128+1)×256
卷积层 C 32 C_{32} C32 56 × 56 × 256 56\times56\times256 56×56×256 3 × 3 × 256 / 1 3\times3\times256/1 3×3×256/1 56 × 56 × 256 56\times56\times256 56×56×256 ( 3 × 3 × 256 + 1 ) × 256 (3\times3\times256+1)\times256 (3×3×256+1)×256
卷积层 C 33 C_{33} C33 56 × 56 × 256 56\times56\times256 56×56×256 3 × 3 × 256 / 1 3\times3\times256/1 3×3×256/1 56 × 56 × 256 56\times56\times256 56×56×256 ( 3 × 3 × 256 + 1 ) × 256 (3\times3\times256+1)\times256 (3×3×256+1)×256
下采样层 S m a x 3 S_{max3} Smax3 56 × 56 × 256 56\times56\times256 56×56×256 2 × 2 / 2 2\times2/2 2×2/2 28 × 28 × 256 28\times28\times256 28×28×256 0 0 0
卷积层 C 41 C_{41} C41 28 × 28 × 256 28\times28\times256 28×28×256 3 × 3 × 512 / 1 3\times3\times512/1 3×3×512/1 28 × 28 × 512 28\times28\times512 28×28×512 ( 3 × 3 × 256 + 1 ) × 512 (3\times3\times256+1)\times512 (3×3×256+1)×512
卷积层 C 42 C_{42} C42 28 × 28 × 512 28\times28\times512 28×28×512 3 × 3 × 512 / 1 3\times3\times512/1 3×3×512/1 28 × 28 × 512 28\times28\times512 28×28×512 ( 3 × 3 × 512 + 1 ) × 512 (3\times3\times512+1)\times512 (3×3×512+1)×512
卷积层 C 43 C_{43} C43 28 × 28 × 512 28\times28\times512 28×28×512 3 × 3 × 512 / 1 3\times3\times512/1 3×3×512/1 28 × 28 × 512 28\times28\times512 28×28×512 ( 3 × 3 × 512 + 1 ) × 512 (3\times3\times512+1)\times512 (3×3×512+1)×512
下采样层 S m a x 4 S_{max4} Smax4 28 × 28 × 512 28\times28\times512 28×28×512 2 × 2 / 2 2\times2/2 2×2/2 14 × 14 × 512 14\times14\times512 14×14×512 0 0 0
卷积层 C 51 C_{51} C51 14 × 14 × 512 14\times14\times512 14×14×512 3 × 3 × 512 / 1 3\times3\times512/1 3×3×512/1 14 × 14 × 512 14\times14\times512 14×14×512 ( 3 × 3 × 512 + 1 ) × 512 (3\times3\times512+1)\times512 (3×3×512+1)×512
卷积层 C 52 C_{52} C52 14 × 14 × 512 14\times14\times512 14×14×512 3 × 3 × 512 / 1 3\times3\times512/1 3×3×512/1 14 × 14 × 512 14\times14\times512 14×14×512 ( 3 × 3 × 512 + 1 ) × 512 (3\times3\times512+1)\times512 (3×3×512+1)×512
卷积层 C 53 C_{53} C53 14 × 14 × 512 14\times14\times512 14×14×512 3 × 3 × 512 / 1 3\times3\times512/1 3×3×512/1 14 × 14 × 512 14\times14\times512 14×14×512 ( 3 × 3 × 512 + 1 ) × 512 (3\times3\times512+1)\times512 (3×3×512+1)×512
下采样层 S m a x 5 S_{max5} Smax5 14 × 14 × 512 14\times14\times512 14×14×512 2 × 2 / 2 2\times2/2 2×2/2 7 × 7 × 512 7\times7\times512 7×7×512 0 0 0
全连接层 F C 1 FC_{1} FC1 7 × 7 × 512 7\times7\times512 7×7×512 ( 7 × 7 × 512 ) × 4096 (7\times7\times512)\times4096 (7×7×512)×4096 1 × 4096 1\times4096 1×4096 ( 7 × 7 × 512 + 1 ) × 4096 (7\times7\times512+1)\times4096 (7×7×512+1)×4096
全连接层 F C 2 FC_{2} FC2 1 × 4096 1\times4096 1×4096 4096 × 4096 4096\times4096 4096×4096 1 × 4096 1\times4096 1×4096 ( 4096 + 1 ) × 4096 (4096+1)\times4096 (4096+1)×4096
全连接层 F C 3 FC_{3} FC3 1 × 4096 1\times4096 1×4096 4096 × 1000 4096\times1000 4096×1000 1 × 1000 1\times1000 1×1000 ( 4096 + 1 ) × 1000 (4096+1)\times1000 (4096+1)×1000

在这里插入图片描述

3. 模型特性

  • 整个网络都使用了同样大小的卷积核尺寸 3 × 3 3\times3 3×3和最大池化尺寸 2 × 2 2\times2 2×2
  • 1 × 1 1\times1 1×1卷积的意义主要在于线性变换,而输入通道数和输出通道数不变,没有发生降维。
  • 两个 3 × 3 3\times3 3×3的卷积层串联相当于1个 5 × 5 5\times5 5×5的卷积层,感受野大小为 5 × 5 5\times5 5×5。同样地,3个 3 × 3 3\times3 3×3的卷积层串联的效果则相当于1个 7 × 7 7\times7 7×7的卷积层。这样的连接方式使得网络参数量更小,而且多层的激活函数令网络对特征的学习能力更强。
  • VGGNet在训练时有一个小技巧,先训练浅层的的简单网络VGG11,再复用VGG11的权重来初始化VGG13,如此反复训练并初始化VGG19,能够使训练时收敛的速度更快。
  • 在训练过程中使用多尺度的变换对原始数据做数据增强,使得模型不易过拟合。

4. VGG16模型PyTorch代码实现

import torch
import torch.nn as nn
from torchvision.models.utils import load_state_dict_from_url


#--------------------------------------#
#   VGG16的结构
#--------------------------------------#
class VGG(nn.Module):
    def __init__(self, features, num_classes=1000, init_weights=True):
        super(VGG, self).__init__()
        self.features = features
        #--------------------------------------#
        #   平均池化到7x7大小
        #--------------------------------------#
        self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
        #--------------------------------------#
        #   分类部分
        #--------------------------------------#
        self.classifier = nn.Sequential(
            nn.Linear(512 * 7 * 7, 4096),
            nn.ReLU(True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(True),
            nn.Dropout(),
            nn.Linear(4096, num_classes),
        )
        if init_weights:
            self._initialize_weights()

    def forward(self, x):
        #--------------------------------------#
        #   特征提取
        #--------------------------------------#
        x = self.features(x)
        #--------------------------------------#
        #   平均池化
        #--------------------------------------#
        x = self.avgpool(x)
        #--------------------------------------#
        #   平铺后
        #--------------------------------------#
        x = torch.flatten(x, 1)
        #--------------------------------------#
        #   分类部分
        #--------------------------------------#
        x = self.classifier(x)
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)

'''
假设输入图像为(600, 600, 3),随着cfg的循环,特征层变化如下:
600,600,3 -> 600,600,64 -> 600,600,64 -> 300,300,64 -> 300,300,128 -> 300,300,128 -> 150,150,128 -> 150,150,256 -> 150,150,256 -> 150,150,256 
-> 75,75,256 -> 75,75,512 -> 75,75,512 -> 75,75,512 -> 37,37,512 ->  37,37,512 -> 37,37,512 -> 37,37,512
到cfg结束,我们获得了一个37,37,512的特征层
'''

cfg = [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M']

#--------------------------------------#
#   特征提取部分
#--------------------------------------#
def make_layers(cfg, batch_norm=False):
    layers = []
    in_channels = 3
    for v in cfg:
        if v == 'M':
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        else:
            conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
            if batch_norm:
                layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
            else:
                layers += [conv2d, nn.ReLU(inplace=True)]
            in_channels = v
    return nn.Sequential(*layers)

def decom_vgg16(pretrained = False):
    model = VGG(make_layers(cfg))
    if pretrained:
        state_dict = load_state_dict_from_url("https://download.pytorch.org/models/vgg16-397923af.pth", model_dir="./model_data")
        model.load_state_dict(state_dict)
    #----------------------------------------------------------------------------#
    #   获取特征提取部分,最终获得一个37,37,1024的特征层
    #----------------------------------------------------------------------------#
    features    = list(model.features)[:30]
    #----------------------------------------------------------------------------#
    #   获取分类部分,需要除去Dropout部分
    #----------------------------------------------------------------------------#
    classifier  = list(model.classifier)
    del classifier[6]
    del classifier[5]
    del classifier[2]

    features    = nn.Sequential(*features)
    classifier  = nn.Sequential(*classifier)
    return features, classifier
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/凡人多烦事01/article/detail/75048
推荐阅读
相关标签
  

闽ICP备14008679号