赞
踩
先来看看OpenCV官方的例子得到效果是非常的好,输入的images如下:
效果:
#Stitcher类与detail命名空间
OpenCV提供了高级别的函数封装在Stitcher类中,使用很方便,不用考虑太多的细节。
低级别函数封装在detail命名空间中,展示了OpenCV算法实现的很多步骤和细节,使熟悉如下拼接流水线的用户,方便自己定制。
这涉及到以下算法流程:
命令行调用程序,输入源图像以及程序的参数
特征点检测,判断是使用surf还是orb,默认是surf。
对图像的特征点进行匹配,使用最近邻和次近邻方法,
将两个最优的匹配的置信度保存下来。
对图像进行排序以及将置信度高的图像保存到同一个集合中,
删除置信度比较低的图像间的匹配,得到能正确匹配的图像序列。
这样将置信度高于门限的所有匹配合并到一个集合中。
对所有图像进行相机参数粗略估计,然后求出旋转矩阵
使用光束平均法进一步精准的估计出旋转矩阵。
波形校正,水平或者垂直
拼接
融合,多频段融合,光照补偿。
另外在拼接的时候可以设置不同warper,这样会对拼接之后的图像生成不同效果,常见的效果包括
如下图所示:
代码演示:
-
- #include <opencv2/opencv.hpp>
- #include <iostream>
-
- using namespace cv;
- using namespace std;
-
- int main(int argc, char** argv) {
- vector<string> files;
- glob("D:/images/zsxq/1", files);
- vector<Mat> images;
- for (int i = 0; i < files.size(); i++) {
- printf("image file : %s \n", files[i].c_str());
- images.push_back(imread(files[i]));
- }
-
- // 设置拼接模式与参数
- Mat result1, result2, result3;
- Stitcher::Mode mode = Stitcher::PANORAMA;
- Ptr<Stitcher> stitcher = Stitcher::create(mode);
-
- // 拼接方式-多通道融合
- auto blender = detail::Blender::createDefault(detail::Blender::MULTI_BAND);
- stitcher->setBlender(blender);
-
- // 拼接
- Stitcher::Status status = stitcher->stitch(images, result1);
-
- // 平面曲翘拼接
- auto plane_warper = makePtr<cv::PlaneWarper>();
- stitcher->setWarper(plane_warper);
- status = stitcher->stitch(images, result2);
-
- // 鱼眼拼接
- auto fisheye_warper = makePtr<cv::FisheyeWarper>();
- stitcher->setWarper(fisheye_warper);
- status = stitcher->stitch(images, result3);
-
- // 检查返回
- if (status != Stitcher::OK)
- {
- cout << "Can't stitch images, error code = " << int(status) << endl;
- return EXIT_FAILURE;
- }
- imwrite("D:/result1.png", result1);
- imwrite("D:/result2.png", result2);
- imwrite("D:/result3.png", result3);
-
- waitKey(0);
- return 0;
- }
在来看一组输入4张图像,每张分辨率为327*245,总的拼接时间为9.25s。
演示代码:
- #include <iostream>
-
- #include <fstream>
-
- #include <string>
-
- #include "opencv2/opencv_modules.hpp"
-
- #include "opencv2/highgui/highgui.hpp"
-
- #include "opencv2/stitching/detail/autocalib.hpp"
-
- #include "opencv2/stitching/detail/blenders.hpp"
-
- #include "opencv2/stitching/detail/camera.hpp"
-
- #include "opencv2/stitching/detail/exposure_compensate.hpp"
-
- #include "opencv2/stitching/detail/matchers.hpp"
-
- #include "opencv2/stitching/detail/motion_estimators.hpp"
-
- #include "opencv2/stitching/detail/seam_finders.hpp"
-
- #include "opencv2/stitching/detail/util.hpp"
-
- #include "opencv2/stitching/detail/warpers.hpp"
-
- #include "opencv2/stitching/warpers.hpp"
-
- using namespace std;
-
- using namespace cv;
-
- using namespace cv::detail;
-
- //
-
- #define ENABLE_LOG 1
-
- // Default command line args
-
- vector<string> img_names;
-
- bool preview = false;
-
- bool try_gpu = true;
-
- double work_megapix = 0.6;
-
- double seam_megapix = 0.1;
-
- double compose_megapix = -1;
-
- float conf_thresh = 1.f;
-
- string features_type = "surf";
-
- string ba_cost_func = "ray";
-
- string ba_refine_mask = "xxxxx";
-
- bool do_wave_correct = true;
-
- WaveCorrectKind wave_correct = detail::WAVE_CORRECT_HORIZ;
-
- bool save_graph = false;
-
- std::string save_graph_to;
-
- string warp_type = "spherical";
-
- int expos_comp_type = ExposureCompensator::GAIN_BLOCKS;
-
- float match_conf = 0.3f;
-
- string seam_find_type = "gc_color";
-
- int blend_type = Blender::MULTI_BAND;
-
- float blend_strength = 5;
-
- string result_name = "result.jpg";
-
- int main(int argc, char* argv[])
-
- {
-
- //读入图像
-
- double ttt = getTickCount();
-
- img_names.push_back("E:/workspace/iamge/dataset/yard1.jpg");
-
- img_names.push_back("E:/workspace/iamge/dataset/yard2.jpg");
-
- img_names.push_back("E:/workspace/iamge/dataset/yard3.jpg");
-
- img_names.push_back("E:/workspace/iamge/dataset/yard4.jpg");
-
- #if ENABLE_LOG
-
- int64 app_start_time = getTickCount();
-
- #endif
-
- cv::setBreak(true);
-
- /*int retval = parseCmdArgs(argc, argv);
-
- if (retval)
-
- return retval;*/
-
- // Check if have enough images
-
- int num_images = static_cast<int>(img_names.size());
-
- if (num_images < 2)
-
- {
-
- LOGLN("Need more images");
-
- return -1;
-
- }
-
- double work_scale = 1, seam_scale = 1, compose_scale = 1;
-
- bool is_work_scale_set = false, is_seam_scale_set = false, is_compose_scale_set = false;
-
- LOGLN("Finding features...");
-
- #if ENABLE_LOG
-
- int64 t = getTickCount();
-
- #endif
-
- Ptr<FeaturesFinder> finder;
-
- if (features_type == "surf")
-
- {
-
- #if defined(HAVE_OPENCV_NONFREE) && defined(HAVE_OPENCV_GPU)
-
- if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
-
- finder = new SurfFeaturesFinderGpu();
-
- else
-
- #endif
-
- finder = new SurfFeaturesFinder();
-
- }
-
- else if (features_type == "orb")
-
- {
-
- finder = new OrbFeaturesFinder();
-
- }
-
- else
-
- {
-
- cout << "Unknown 2D features type: '" << features_type << "'.\n";
-
- return -1;
-
- }
-
- Mat full_img, img;
-
- vector<ImageFeatures> features(num_images);
-
- vector<Mat> images(num_images);
-
- vector<Size> full_img_sizes(num_images);
-
- double seam_work_aspect = 1;
-
- for (int i = 0; i < num_images; ++i)
-
- {
-
- full_img = imread(img_names[i]);
-
- full_img_sizes[i] = full_img.size();
-
- if (full_img.empty())
-
- {
-
- LOGLN("Can't open image " << img_names[i]);
-
- return -1;
-
- }
-
- if (work_megapix < 0)
-
- {
-
- img = full_img;
-
- work_scale = 1;
-
- is_work_scale_set = true;
-
- }
-
- else
-
- {
-
- if (!is_work_scale_set)
-
- {
-
- work_scale = min(1.0, sqrt(work_megapix * 1e6 / full_img.size().area()));
-
- is_work_scale_set = true;
-
- }
-
- resize(full_img, img, Size(), work_scale, work_scale);
-
- }
-
- if (!is_seam_scale_set)
-
- {
-
- seam_scale = min(1.0, sqrt(seam_megapix * 1e6 / full_img.size().area()));
-
- seam_work_aspect = seam_scale / work_scale;
-
- is_seam_scale_set = true;
-
- }
-
- (*finder)(img, features[i]);
-
- features[i].img_idx = i;
-
- LOGLN("Features in image #" << i+1 << ": " << features[i].keypoints.size());
-
- resize(full_img, img, Size(), seam_scale, seam_scale);
-
- images[i] = img.clone();
-
- }
-
- finder->collectGarbage();
-
- full_img.release();
-
- img.release();
-
- LOGLN("Finding features, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
-
- LOG("Pairwise matching");
-
- #if ENABLE_LOG
-
- t = getTickCount();
-
- #endif
-
- vector<MatchesInfo> pairwise_matches;
-
- BestOf2NearestMatcher matcher(try_gpu, match_conf);
-
- matcher(features, pairwise_matches);
-
- matcher.collectGarbage();
-
- LOGLN("Pairwise matching, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
-
- // Check if we should save matches graph
-
- if (save_graph)
-
- {
-
- LOGLN("Saving matches graph...");
-
- ofstream f(save_graph_to.c_str());
-
- f << matchesGraphAsString(img_names, pairwise_matches, conf_thresh);
-
- }
-
- // Leave only images we are sure are from the same panorama
-
- vector<int> indices = leaveBiggestComponent(features, pairwise_matches, conf_thresh);
-
- vector<Mat> img_subset;
-
- vector<string> img_names_subset;
-
- vector<Size> full_img_sizes_subset;
-
- for (size_t i = 0; i < indices.size(); ++i)
-
- {
-
- img_names_subset.push_back(img_names[indices[i]]);
-
- img_subset.push_back(images[indices[i]]);
-
- full_img_sizes_subset.push_back(full_img_sizes[indices[i]]);
-
- }
-
- images = img_subset;
-
- img_names = img_names_subset;
-
- full_img_sizes = full_img_sizes_subset;
-
- // Check if we still have enough images
-
- num_images = static_cast<int>(img_names.size());
-
- if (num_images < 2)
-
- {
-
- LOGLN("Need more images");
-
- return -1;
-
- }
-
- HomographyBasedEstimator estimator;
-
- vector<CameraParams> cameras;
-
- estimator(features, pairwise_matches, cameras);
-
- for (size_t i = 0; i < cameras.size(); ++i)
-
- {
-
- Mat R;
-
- cameras[i].R.convertTo(R, CV_32F);
-
- cameras[i].R = R;
-
- LOGLN("Initial intrinsics #" << indices[i]+1 << ":\n" << cameras[i].K());
-
- }
-
- Ptr<detail::BundleAdjusterBase> adjuster;
-
- if (ba_cost_func == "reproj") adjuster = new detail::BundleAdjusterReproj();
-
- else if (ba_cost_func == "ray") adjuster = new detail::BundleAdjusterRay();
-
- else
-
- {
-
- cout << "Unknown bundle adjustment cost function: '" << ba_cost_func << "'.\n";
-
- return -1;
-
- }
-
- adjuster->setConfThresh(conf_thresh);
-
- Mat_<uchar> refine_mask = Mat::zeros(3, 3, CV_8U);
-
- if (ba_refine_mask[0] == 'x') refine_mask(0,0) = 1;
-
- if (ba_refine_mask[1] == 'x') refine_mask(0,1) = 1;
-
- if (ba_refine_mask[2] == 'x') refine_mask(0,2) = 1;
-
- if (ba_refine_mask[3] == 'x') refine_mask(1,1) = 1;
-
- if (ba_refine_mask[4] == 'x') refine_mask(1,2) = 1;
-
- adjuster->setRefinementMask(refine_mask);
-
- (*adjuster)(features, pairwise_matches, cameras);
-
- // Find median focal length
-
- vector<double> focals;
-
- for (size_t i = 0; i < cameras.size(); ++i)
-
- {
-
- LOGLN("Camera #" << indices[i]+1 << ":\n" << cameras[i].K());
-
- focals.push_back(cameras[i].focal);
-
- }
-
- sort(focals.begin(), focals.end());
-
- float warped_image_scale;
-
- if (focals.size() % 2 == 1)
-
- warped_image_scale = static_cast<float>(focals[focals.size() / 2]);
-
- else
-
- warped_image_scale = static_cast<float>(focals[focals.size() / 2 - 1] + focals[focals.size() / 2]) * 0.5f;
-
- if (do_wave_correct)
-
- {
-
- vector<Mat> rmats;
-
- for (size_t i = 0; i < cameras.size(); ++i)
-
- rmats.push_back(cameras[i].R.clone());
-
- waveCorrect(rmats, wave_correct);
-
- for (size_t i = 0; i < cameras.size(); ++i)
-
- cameras[i].R = rmats[i];
-
- }
-
- LOGLN("Warping images (auxiliary)... ");
-
- #if ENABLE_LOG
-
- t = getTickCount();
-
- #endif
-
- vector<Point> corners(num_images);
-
- vector<Mat> masks_warped(num_images);
-
- vector<Mat> images_warped(num_images);
-
- vector<Size> sizes(num_images);
-
- vector<Mat> masks(num_images);
-
- // Preapre images masks
-
- for (int i = 0; i < num_images; ++i)
-
- {
-
- masks[i].create(images[i].size(), CV_8U);
-
- masks[i].setTo(Scalar::all(255));
-
- }
-
- // Warp images and their masks
-
- Ptr<WarperCreator> warper_creator;
-
- #if defined(HAVE_OPENCV_GPU)
-
- if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
-
- {
-
- if (warp_type == "plane") warper_creator = new cv::PlaneWarperGpu();
-
- else if (warp_type == "cylindrical") warper_creator = new cv::CylindricalWarperGpu();
-
- else if (warp_type == "spherical") warper_creator = new cv::SphericalWarperGpu();
-
- }
-
- else
-
- #endif
-
- {
-
- if (warp_type == "plane") warper_creator = new cv::PlaneWarper();
-
- else if (warp_type == "cylindrical") warper_creator = new cv::CylindricalWarper();
-
- else if (warp_type == "spherical") warper_creator = new cv::SphericalWarper();
-
- else if (warp_type == "fisheye") warper_creator = new cv::FisheyeWarper();
-
- else if (warp_type == "stereographic") warper_creator = new cv::StereographicWarper();
-
- else if (warp_type == "compressedPlaneA2B1") warper_creator = new cv::CompressedRectilinearWarper(2, 1);
-
- else if (warp_type == "compressedPlaneA1.5B1") warper_creator = new cv::CompressedRectilinearWarper(1.5, 1);
-
- else if (warp_type == "compressedPlanePortraitA2B1") warper_creator = new cv::CompressedRectilinearPortraitWarper(2, 1);
-
- else if (warp_type == "compressedPlanePortraitA1.5B1") warper_creator = new cv::CompressedRectilinearPortraitWarper(1.5, 1);
-
- else if (warp_type == "paniniA2B1") warper_creator = new cv::PaniniWarper(2, 1);
-
- else if (warp_type == "paniniA1.5B1") warper_creator = new cv::PaniniWarper(1.5, 1);
-
- else if (warp_type == "paniniPortraitA2B1") warper_creator = new cv::PaniniPortraitWarper(2, 1);
-
- else if (warp_type == "paniniPortraitA1.5B1") warper_creator = new cv::PaniniPortraitWarper(1.5, 1);
-
- else if (warp_type == "mercator") warper_creator = new cv::MercatorWarper();
-
- else if (warp_type == "transverseMercator") warper_creator = new cv::TransverseMercatorWarper();
-
- }
-
- if (warper_creator.empty())
-
- {
-
- cout << "Can't create the following warper '" << warp_type << "'\n";
-
- return 1;
-
- }
-
- Ptr<RotationWarper> warper = warper_creator->create(static_cast<float>(warped_image_scale * seam_work_aspect));
-
- for (int i = 0; i < num_images; ++i)
-
- {
-
- Mat_<float> K;
-
- cameras[i].K().convertTo(K, CV_32F);
-
- float swa = (float)seam_work_aspect;
-
- K(0,0) *= swa; K(0,2) *= swa;
-
- K(1,1) *= swa; K(1,2) *= swa;
-
- corners[i] = warper->warp(images[i], K, cameras[i].R, INTER_LINEAR, BORDER_REFLECT, images_warped[i]);
-
- sizes[i] = images_warped[i].size();
-
- warper->warp(masks[i], K, cameras[i].R, INTER_NEAREST, BORDER_CONSTANT, masks_warped[i]);
-
- }
-
- vector<Mat> images_warped_f(num_images);
-
- for (int i = 0; i < num_images; ++i)
-
- images_warped[i].convertTo(images_warped_f[i], CV_32F);
-
- LOGLN("Warping images, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
-
- Ptr<ExposureCompensator> compensator = ExposureCompensator::createDefault(expos_comp_type);
-
- compensator->feed(corners, images_warped, masks_warped);
-
- Ptr<SeamFinder> seam_finder;
-
- if (seam_find_type == "no")
-
- seam_finder = new detail::NoSeamFinder();
-
- else if (seam_find_type == "voronoi")
-
- seam_finder = new detail::VoronoiSeamFinder();
-
- else if (seam_find_type == "gc_color")
-
- {
-
- #if defined(HAVE_OPENCV_GPU)
-
- if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
-
- seam_finder = new detail::GraphCutSeamFinderGpu(GraphCutSeamFinderBase::COST_COLOR);
-
- else
-
- #endif
-
- seam_finder = new detail::GraphCutSeamFinder(GraphCutSeamFinderBase::COST_COLOR);
-
- }
-
- else if (seam_find_type == "gc_colorgrad")
-
- {
-
- #if defined(HAVE_OPENCV_GPU)
-
- if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
-
- seam_finder = new detail::GraphCutSeamFinderGpu(GraphCutSeamFinderBase::COST_COLOR_GRAD);
-
- else
-
- #endif
-
- seam_finder = new detail::GraphCutSeamFinder(GraphCutSeamFinderBase::COST_COLOR_GRAD);
-
- }
-
- else if (seam_find_type == "dp_color")
-
- seam_finder = new detail::DpSeamFinder(DpSeamFinder::COLOR);
-
- else if (seam_find_type == "dp_colorgrad")
-
- seam_finder = new detail::DpSeamFinder(DpSeamFinder::COLOR_GRAD);
-
- if (seam_finder.empty())
-
- {
-
- cout << "Can't create the following seam finder '" << seam_find_type << "'\n";
-
- return 1;
-
- }
-
- seam_finder->find(images_warped_f, corners, masks_warped);
-
- // Release unused memory
-
- images.clear();
-
- images_warped.clear();
-
- images_warped_f.clear();
-
- masks.clear();
-
- LOGLN("Compositing...");
-
- #if ENABLE_LOG
-
- t = getTickCount();
-
- #endif
-
- Mat img_warped, img_warped_s;
-
- Mat dilated_mask, seam_mask, mask, mask_warped;
-
- Ptr<Blender> blender;
-
- //double compose_seam_aspect = 1;
-
- double compose_work_aspect = 1;
-
- for (int img_idx = 0; img_idx < num_images; ++img_idx)
-
- {
-
- LOGLN("Compositing image #" << indices[img_idx]+1);
-
- // Read image and resize it if necessary
-
- full_img = imread(img_names[img_idx]);
-
- if (!is_compose_scale_set)
-
- {
-
- if (compose_megapix > 0)
-
- compose_scale = min(1.0, sqrt(compose_megapix * 1e6 / full_img.size().area()));
-
- is_compose_scale_set = true;
-
- // Compute relative scales
-
- //compose_seam_aspect = compose_scale / seam_scale;
-
- compose_work_aspect = compose_scale / work_scale;
-
- // Update warped image scale
-
- warped_image_scale *= static_cast<float>(compose_work_aspect);
-
- warper = warper_creator->create(warped_image_scale);
-
- // Update corners and sizes
-
- for (int i = 0; i < num_images; ++i)
-
- {
-
- // Update intrinsics
-
- cameras[i].focal *= compose_work_aspect;
-
- cameras[i].ppx *= compose_work_aspect;
-
- cameras[i].ppy *= compose_work_aspect;
-
- // Update corner and size
-
- Size sz = full_img_sizes[i];
-
- if (std::abs(compose_scale - 1) > 1e-1)
-
- {
-
- sz.width = cvRound(full_img_sizes[i].width * compose_scale);
-
- sz.height = cvRound(full_img_sizes[i].height * compose_scale);
-
- }
-
- Mat K;
-
- cameras[i].K().convertTo(K, CV_32F);
-
- Rect roi = warper->warpRoi(sz, K, cameras[i].R);
-
- corners[i] = roi.tl();
-
- sizes[i] = roi.size();
-
- }
-
- }
-
- if (abs(compose_scale - 1) > 1e-1)
-
- resize(full_img, img, Size(), compose_scale, compose_scale);
-
- else
-
- img = full_img;
-
- full_img.release();
-
- Size img_size = img.size();
-
- Mat K;
-
- cameras[img_idx].K().convertTo(K, CV_32F);
-
- // Warp the current image
-
- warper->warp(img, K, cameras[img_idx].R, INTER_LINEAR, BORDER_REFLECT, img_warped);
-
- // Warp the current image mask
-
- mask.create(img_size, CV_8U);
-
- mask.setTo(Scalar::all(255));
-
- warper->warp(mask, K, cameras[img_idx].R, INTER_NEAREST, BORDER_CONSTANT, mask_warped);
-
- // Compensate exposure
-
- compensator->apply(img_idx, corners[img_idx], img_warped, mask_warped);
-
- img_warped.convertTo(img_warped_s, CV_16S);
-
- img_warped.release();
-
- img.release();
-
- mask.release();
-
- dilate(masks_warped[img_idx], dilated_mask, Mat());
-
- resize(dilated_mask, seam_mask, mask_warped.size());
-
- mask_warped = seam_mask & mask_warped;
-
- if (blender.empty())
-
- {
-
- blender = Blender::createDefault(blend_type, try_gpu);
-
- Size dst_sz = resultRoi(corners, sizes).size();
-
- float blend_width = sqrt(static_cast<float>(dst_sz.area())) * blend_strength / 100.f;
-
- if (blend_width < 1.f)
-
- blender = Blender::createDefault(Blender::NO, try_gpu);
-
- else if (blend_type == Blender::MULTI_BAND)
-
- {
-
- MultiBandBlender* mb = dynamic_cast<MultiBandBlender*>(static_cast<Blender*>(blender));
-
- mb->setNumBands(static_cast<int>(ceil(log(blend_width)/log(2.)) - 1.));
-
- LOGLN("Multi-band blender, number of bands: " << mb->numBands());
-
- }
-
- else if (blend_type == Blender::FEATHER)
-
- {
-
- FeatherBlender* fb = dynamic_cast<FeatherBlender*>(static_cast<Blender*>(blender));
-
- fb->setSharpness(1.f/blend_width);
-
- LOGLN("Feather blender, sharpness: " << fb->sharpness());
-
- }
-
- blender->prepare(corners, sizes);
-
- }
-
- // Blend the current image
-
- blender->feed(img_warped_s, mask_warped, corners[img_idx]);
-
- }
-
- Mat result, result_mask;
-
- blender->blend(result, result_mask);
-
- LOGLN("Compositing, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
-
- imwrite(result_name, result);
-
- result.convertTo(result,CV_8UC1);
-
- imshow("stitch",result);
-
- ttt = ((double)getTickCount() - ttt) / getTickFrequency();
-
- cout << "总的拼接时间:" << ttt << endl;
-
- waitKey(0);
-
- LOGLN("Finished, total time: " << ((getTickCount() - app_start_time) / getTickFrequency()) << " sec");
-
- return 0;
-
- }
效果:
论文源码关注微信公众号:“图像算法”或者微信搜索账号imalg_cn关注公众号
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。