赞
踩
OpenCV常用图像拼接方法将分为四个部分与大家共享,这里是第三种方法,欢迎关注后续。
OpenCV的常用图像拼接方法(三):基于特征匹配的图像拼接,本次介绍SIFT特征匹配拼接方法,OpenCV版本为4.4.0。特点和适用范围:图像有足够重合相同特征区域,且待拼接图像之间无明显尺度变换和畸变。
优点:适应部分倾斜变化情况。缺点:需要有足够的相同特征区域进行匹配,速度较慢,拼接较大图片容易崩溃。
如下是待拼接的两张图片:
特征匹配图:
拼接结果图:
拼接缝处理后(拼接处过渡更自然):
核心代码:
-
- /********************直接图像拼接函数*************************/
- bool ImageOverlap0(Mat &img1, Mat &img2)
- {
- Mat g1(img1, Rect(0, 0, img1.cols, img1.rows)); // init roi
- Mat g2(img2, Rect(0, 0, img2.cols, img2.rows));
-
- cvtColor(g1, g1, COLOR_BGR2GRAY);
- cvtColor(g2, g2, COLOR_BGR2GRAY);
-
- vector<cv::KeyPoint> keypoints_roi, keypoints_img; /* keypoints found using SIFT */
- Mat descriptor_roi, descriptor_img; /* Descriptors for SIFT */
- FlannBasedMatcher matcher; /* FLANN based matcher to match keypoints */
-
- vector<cv::DMatch> matches, good_matches;
- cv::Ptr<cv::SIFT> sift = cv::SIFT::create();
- int i, dist = 80;
-
- sift->detectAndCompute(g1, cv::Mat(), keypoints_roi, descriptor_roi); /* get keypoints of ROI image */
- sift->detectAndCompute(g2, cv::Mat(), keypoints_img, descriptor_img); /* get keypoints of the image */
- matcher.match(descriptor_roi, descriptor_img, matches); //实现描述符之间的匹配
-
- double max_dist = 0; double min_dist = 5000;
- //-- Quick calculation of max and min distances between keypoints
- for (int i = 0; i < descriptor_roi.rows; i++)
- {
- double dist = matches[i].distance;
- if (dist < min_dist) min_dist = dist;
- if (dist > max_dist) max_dist = dist;
- }
- // 特征点筛选
- for (i = 0; i < descriptor_roi.rows; i++)
- {
- if (matches[i].distance < 3 * min_dist)
- {
- good_matches.push_back(matches[i]);
- }
- }
-
- printf("%ld no. of matched keypoints in right image\n", good_matches.size());
- /* Draw matched keypoints */
-
- Mat img_matches;
- //绘制匹配
- drawMatches(img1, keypoints_roi, img2, keypoints_img,
- good_matches, img_matches, Scalar::all(-1),
- Scalar::all(-1), vector<char>(),
- DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
- imshow("matches", img_matches);
-
- vector<Point2f> keypoints1, keypoints2;
- for (i = 0; i < good_matches.size(); i++)
- {
- keypoints1.push_back(keypoints_img[good_matches[i].trainIdx].pt);
- keypoints2.push_back(keypoints_roi[good_matches[i].queryIdx].pt);
- }
- //计算单应矩阵(仿射变换矩阵)
- Mat H = findHomography(keypoints1, keypoints2, RANSAC);
- Mat H2 = findHomography(keypoints2, keypoints1, RANSAC);
-
-
- Mat stitchedImage; //定义仿射变换后的图像(也是拼接结果图像)
- Mat stitchedImage2; //定义仿射变换后的图像(也是拼接结果图像)
- int mRows = img2.rows;
- if (img1.rows > img2.rows)
- {
- mRows = img1.rows;
- }
-
- int count = 0;
- for (int i = 0; i < keypoints2.size(); i++)
- {
- if (keypoints2[i].x >= img2.cols / 2)
- count++;
- }
- //判断匹配点位置来决定图片是左还是右
- if (count / float(keypoints2.size()) >= 0.5) //待拼接img2图像在右边
- {
- cout << "img1 should be left" << endl;
- vector<Point2f>corners(4);
- vector<Point2f>corners2(4);
- corners[0] = Point(0, 0);
- corners[1] = Point(0, img2.rows);
- corners[2] = Point(img2.cols, img2.rows);
- corners[3] = Point(img2.cols, 0);
- stitchedImage = Mat::zeros(img2.cols + img1.cols, mRows, CV_8UC3);
- warpPerspective(img2, stitchedImage, H, Size(img2.cols + img1.cols, mRows));
-
- perspectiveTransform(corners, corners2, H);
- /*
- circle(stitchedImage, corners2[0], 5, Scalar(0, 255, 0), 2, 8);
- circle(stitchedImage, corners2[1], 5, Scalar(0, 255, 255), 2, 8);
- circle(stitchedImage, corners2[2], 5, Scalar(0, 255, 0), 2, 8);
- circle(stitchedImage, corners2[3], 5, Scalar(0, 255, 0), 2, 8); */
- cout << corners2[0].x << ", " << corners2[0].y << endl;
- cout << corners2[1].x << ", " << corners2[1].y << endl;
- imshow("temp", stitchedImage);
- //imwrite("temp.jpg", stitchedImage);
-
- Mat half(stitchedImage, Rect(0, 0, img1.cols, img1.rows));
- img1.copyTo(half);
- imshow("result", stitchedImage);
- }
- else //待拼接图像img2在左边
- {
- cout << "img2 should be left" << endl;
- stitchedImage = Mat::zeros(img2.cols + img1.cols, mRows, CV_8UC3);
- warpPerspective(img1, stitchedImage, H2, Size(img1.cols + img2.cols, mRows));
- imshow("temp", stitchedImage);
-
- //计算仿射变换后的四个端点
- vector<Point2f>corners(4);
- vector<Point2f>corners2(4);
- corners[0] = Point(0, 0);
- corners[1] = Point(0, img1.rows);
- corners[2] = Point(img1.cols, img1.rows);
- corners[3] = Point(img1.cols, 0);
-
- perspectiveTransform(corners, corners2, H2); //仿射变换对应端点
- /*
- circle(stitchedImage, corners2[0], 5, Scalar(0, 255, 0), 2, 8);
- circle(stitchedImage, corners2[1], 5, Scalar(0, 255, 255), 2, 8);
- circle(stitchedImage, corners2[2], 5, Scalar(0, 255, 0), 2, 8);
- circle(stitchedImage, corners2[3], 5, Scalar(0, 255, 0), 2, 8); */
- cout << corners2[0].x << ", " << corners2[0].y << endl;
- cout << corners2[1].x << ", " << corners2[1].y << endl;
-
- Mat half(stitchedImage, Rect(0, 0, img2.cols, img2.rows));
- img2.copyTo(half);
- imshow("result", stitchedImage);
-
- }
- imwrite("result.bmp", stitchedImage);
- return true;
- }
拼接缝优化代码与完整源码素材将发布在知识星球主题中。
公众号:OpenCV与AI深度学习
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。