赞
踩
matlab带有神经网络工具箱,可直接调用,建议找本书看看,或者MATLAB论坛找例子。
核心调用语句如下:%数据输入%选连样本输入输出数据归一化[inputn,inputps]=mapminmax(input_train);[outputn,outputps]=mapminmax(output_train);%%BP网络训练%%初始化网络结构net=newff(inputn,outputn,[88]);net.trainParam.epochs=100;=0.01;=0.01;%网络训练net=train(net,inputn,outputn);%%BP网络预测%预测数据归一化inputn_test=mapminmax('apply',input_test,inputps);%网络预测输出an=sim(net,inputn_test);%网络输出反归一化BPoutput=mapminmax('reverse',an,outputps);%%结果分析。
谷歌人工智能写作项目:神经网络伪原创
写作猫。
P=[1;2;3;4;5];%月P=[P/50];T=[2;3;4;5;6];%月训练样本T=[T/50];threshold=[01;01;01;01;01;01;01];net=newff(threshold,[15,7],{'tansig','logsig'},'trainlm');net.trainParam.epochs=2000;=0.001;=0.1;net=train(net,P,T);P_test=[6月]';%6月数据预测7月P_test=[P_test/50];y=sim(net,P_test)y=[y*50]。
如何看MATLAB运行神经网络的结果从图中NeuralNetwork可以看出,你的网络结构是两个隐含层,2-3-1-1结构的网络,算法是traindm,显示出来的误差变化为均方误差值mse。
经过482次迭代循环完成训练,耗时5秒。相同计算精度的话,训练次数越少,耗时越短,网络结构越优秀。
达到设定的网络精度0.001的时候,误差下降梯度为0.0046,远大于默认的1e-5,说明此时的网络误差仍在快速下降,所以可以把训练精度目标再提高一些,比如设为0.0001或者1e-5。
神经网络技术在模式识别与分类、识别滤波、自动控制、预测等方面已展示了其非凡的优越性。神经网络的结构由一个输入层、若干个中间隐含层和一个输出层组成。
神经网络分析法通过不断学习,能够从未知模式的大量的复杂数据中发现其规律。
神经网络方法克服了传统分析过程的复杂性及选择适当模型函数形式的困难,它是一种自然的非线性建模过程,毋需分清存在何种非线性关系,给建模与分析带来极大的方便。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。