赞
踩
最近AI很火,老想着利用AI的什么算法,干点什么有意义的事情。其中之一便想到了双色球,然后让AI给我预测,结果基本都是简单使用随机算法列出了几个数字。
额,,,,咋说呢,双色球确实是随机的,但是,如果只是随机,我用你AI干嘛,直接写个随机数就行了嘛。
于是乎,问了下市面上的一些预测算法,给出了俩,一个是:森林机器学习,一个是时间序列。
然后,我让它给我把这俩算法写出来,给是给了,但是,,,无力吐槽。
于是,在我和它的共同配合下,这俩算法的java版诞生了,仅供参考:
- package com.ruoyi.web.controller.test;
- import java.io.BufferedReader;
- import java.io.FileInputStream;
- import java.io.InputStreamReader;
- import java.nio.charset.StandardCharsets;
- import java.util.ArrayList;
- import java.util.HashSet;
- import java.util.List;
- import java.util.Set;
-
- import lombok.val;
- import org.apache.commons.csv.CSVFormat;
- import org.apache.commons.csv.CSVParser;
- import org.apache.commons.csv.CSVRecord;
-
- import weka.classifiers.Classifier;
- import weka.classifiers.trees.RandomForest;
- import weka.core.Attribute;
- import weka.core.DenseInstance;
- import weka.core.Instances;
-
- public class LotteryPredictor {
-
- public static void main(String[] args) throws Exception {
- String csvFilePath = "D:\\12.csv"; // 请替换为你的CSV文件的绝对路径
-
- // Step 1: Read historical data from CSV
- List<int[]> historicalData = readCSV(csvFilePath);
-
- // Step 2: Prepare data for Weka
- Instances trainingData = prepareTrainingData(historicalData);
-
- // Step 3: Train RandomForest model
- Classifier model = new RandomForest();
- model.buildClassifier(trainingData);
-
- // Step 4: Make a prediction
- int[] prediction = predictNextNumbers(model, trainingData);
-
- // Output the prediction
- System.out.println("Predicted numbers: ");
- for (int num : prediction) {
- System.out.print(num + " ");
- }
- }
-
- private static List<int[]> readCSV(String csvFilePath) throws Exception {
- List<int[]> data = new ArrayList<>();
- try (BufferedReader reader = new BufferedReader(new InputStreamReader(new FileInputStream(csvFilePath), StandardCharsets.UTF_8))) {
- CSVParser csvParser = new CSVParser(reader, CSVFormat.DEFAULT.withDelimiter(',').withTrim());
- for (CSVRecord record : csvParser) {
- if(record.size() == 1) {
- val rec = record.get(0).split(","); // Remove non-numeric characters
- int[] row = new int[rec.length];
- for (int i = 0; i < rec.length; i++) {
- String value = rec[i].replaceAll("[^0-9]", ""); // Remove non-numeric characters
- if (!value.isEmpty()) {
- row[i] = Integer.parseInt(value);
- }
- }
- data.add(row);
- }
- else {
- int[] row = new int[record.size()];
- for (int i = 0; i < record.size(); i++) {
- String value = record.get(i).replaceAll("[^0-9]", ""); // Remove non-numeric characters
- if (!value.isEmpty()) {
- row[i] = Integer.parseInt(value);
- }
- }
- data.add(row);
- }
-
- }
- }
- return data;
- }
-
- private static Instances prepareTrainingData(List<int[]> historicalData) {
- // Define attributes
- ArrayList<Attribute> attributes = new ArrayList<>();
- for (int i = 0; i < historicalData.get(0).length; i++) {
- attributes.add(new Attribute("num" + (i + 1)));
- }
-
- // Create dataset
- Instances dataset = new Instances("LotteryData", attributes, historicalData.size());
- dataset.setClassIndex(dataset.numAttributes() - 1);
-
- // Add data
- for (int[] row : historicalData) {
- dataset.add(new DenseInstance(1.0, toDoubleArray(row)));
- }
-
- return dataset;
- }
-
- private static double[] toDoubleArray(int[] intArray) {
- double[] doubleArray = new double[intArray.length];
- for (int i = 0; i < intArray.length; i++) {
- doubleArray[i] = intArray[i];
- }
- return doubleArray;
- }
-
- private static int[] predictNextNumbers(Classifier model, Instances trainingData) throws Exception {
- int numAttributes = trainingData.numAttributes();
- Set<Integer> predictedNumbers = new HashSet<>();
-
- while (predictedNumbers.size() < numAttributes) {
- DenseInstance instance = new DenseInstance(numAttributes);
- instance.setDataset(trainingData);
-
- for (int i = 0; i < numAttributes; i++) {
- instance.setValue(i, Math.random() * 33 + 1); // Random values for prediction
- }
-
- double prediction = model.classifyInstance(instance);
- int predictedNumber = (int) Math.round(prediction);
-
- // Ensure the predicted number is within the valid range and not a duplicate
- if (predictedNumber >= 1 && predictedNumber <= 33) {
- predictedNumbers.add(predictedNumber);
- }
- }
-
- int[] predictionArray = new int[numAttributes];
- int index = 0;
- for (int num : predictedNumbers) {
- predictionArray[index++] = num;
- }
-
- return predictionArray;
- }
- }
- package com.ruoyi.web.controller.test;
- import lombok.val;
- import org.apache.commons.csv.CSVFormat;
- import org.apache.commons.csv.CSVParser;
- import org.apache.commons.csv.CSVRecord;
- import org.deeplearning4j.nn.api.Model;
- import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
- import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
- import org.deeplearning4j.nn.conf.layers.DenseLayer;
- import org.deeplearning4j.nn.conf.layers.OutputLayer;
- import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
- import org.deeplearning4j.optimize.listeners.ScoreIterationListener;
- import org.nd4j.linalg.activations.Activation;
- import org.nd4j.linalg.api.ndarray.INDArray;
- import org.nd4j.linalg.dataset.DataSet;
- import org.nd4j.linalg.dataset.api.preprocessor.NormalizerMinMaxScaler;
- import org.nd4j.linalg.factory.Nd4j;
- import org.nd4j.linalg.learning.config.Adam;
- import org.nd4j.linalg.lossfunctions.LossFunctions;
-
- import java.io.BufferedReader;
- import java.io.FileInputStream;
- import java.io.InputStreamReader;
- import java.nio.charset.StandardCharsets;
- import java.util.ArrayList;
- import java.util.HashSet;
- import java.util.List;
- import java.util.Set;
-
- public class LotteryPredictor3 {
-
- public static void main(String[] args) throws Exception {
- String csvFilePath = "D:\\12.csv"; // 请替换为你的CSV文件的绝对路径
-
- // Step 1: Read historical data from CSV
- List<int[]> historicalData = readCSV(csvFilePath);
-
- // Step 2: Prepare data for time series analysis
- double[][] timeSeriesData = prepareTimeSeriesData(historicalData);
-
- // Step 3: Train neural network model
- MultiLayerNetwork model = trainModel(timeSeriesData);
-
- // Step 4: Make a prediction
- int[] redBallPrediction = predictRedBalls(model, timeSeriesData);
- int blueBallPrediction = predictBlueBall(model, timeSeriesData);
-
- // Output the prediction
- System.out.println("Predicted numbers: ");
- for (int num : redBallPrediction) {
- System.out.print(num + " ");
- }
- System.out.println("Blue ball: " + blueBallPrediction);
- }
-
- private static List<int[]> readCSV(String csvFilePath) throws Exception {
- List<int[]> data = new ArrayList<>();
- try (BufferedReader reader = new BufferedReader(new InputStreamReader(new FileInputStream(csvFilePath), StandardCharsets.UTF_8))) {
- CSVParser csvParser = new CSVParser(reader, CSVFormat.DEFAULT.withDelimiter(',').withTrim());
- for (CSVRecord record : csvParser) {
- if(record.size() == 1) {
- val rec = record.get(0).split(","); // Remove non-numeric characters
- int[] row = new int[rec.length];
- for (int i = 0; i < rec.length; i++) {
- String value = rec[i].replaceAll("[^0-9]", ""); // Remove non-numeric characters
- if (!value.isEmpty()) {
- row[i] = Integer.parseInt(value);
- }
- }
- data.add(row);
- }else {
- int[] row = new int[record.size()];
- for (int i = 0; i < record.size(); i++) {
- String value = record.get(i).replaceAll("[^0-9]", ""); // Remove non-numeric characters
- if (!value.isEmpty()) {
- row[i] = Integer.parseInt(value);
- }
- }
- data.add(row);
- }
-
- }
- }
- return data;
- }
-
- private static double[][] prepareTimeSeriesData(List<int[]> historicalData) {
- // Flatten the historical data into a 2D array
- double[][] timeSeriesData = new double[historicalData.size()][];
- for (int i = 0; i < historicalData.size(); i++) {
- timeSeriesData[i] = new double[historicalData.get(i).length];
- for (int j = 0; j < historicalData.get(i).length; j++) {
- timeSeriesData[i][j] = historicalData.get(i)[j];
- }
- }
- return timeSeriesData;
- }
-
- private static MultiLayerNetwork trainModel(double[][] timeSeriesData) {
- int numInputs = timeSeriesData[0].length;
- int numOutputs = numInputs;
- int numHiddenNodes = 10;
-
- MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
- .updater(new Adam(0.01))
- .list()
- .layer(0, new DenseLayer.Builder().nIn(numInputs).nOut(numHiddenNodes)
- .activation(Activation.RELU)
- .build())
- .layer(1, new OutputLayer.Builder(LossFunctions.LossFunction.MSE)
- .activation(Activation.IDENTITY)
- .nIn(numHiddenNodes).nOut(numOutputs).build())
- .build();
-
- MultiLayerNetwork model = new MultiLayerNetwork(conf);
- model.init();
- model.setListeners(new ScoreIterationListener(10));
-
- // Prepare the data
- INDArray input = Nd4j.create(timeSeriesData);
- INDArray output = Nd4j.create(timeSeriesData);
- DataSet dataSet = new DataSet(input, output);
-
- // Normalize the data
- NormalizerMinMaxScaler scaler = new NormalizerMinMaxScaler(0, 1);
- scaler.fit(dataSet);
- scaler.transform(dataSet);
-
- // Train the model
- for (int i = 0; i < 2000; i++) {
- model.fit(dataSet);
- }
-
- return model;
- }
-
- private static int[] predictRedBalls(MultiLayerNetwork model, double[][] timeSeriesData) {
- INDArray input = Nd4j.create(timeSeriesData);
- INDArray output = model.output(input);
- double[] lastPrediction = output.getRow(output.rows() - 1).toDoubleVector();
-
- Set<Integer> predictedNumbers = new HashSet<>();
- for (double num : lastPrediction) {
- int scaledNum = (int) Math.round(num * 32) + 1; // Scale back to 1-33 range
- if (scaledNum >= 1 && scaledNum <= 33) {
- predictedNumbers.add(scaledNum);
- }
- if (predictedNumbers.size() == 6) {
- break;
- }
- }
-
- // Ensure we have exactly 6 unique numbers
- while (predictedNumbers.size() < 6) {
- int randomNum = (int) (Math.random() * 33) + 1;
- predictedNumbers.add(randomNum);
- }
-
- int[] predictionArray = new int[6];
- int index = 0;
- for (int num : predictedNumbers) {
- predictionArray[index++] = num;
- }
-
- return predictionArray;
- }
-
- private static int predictBlueBall(MultiLayerNetwork model, double[][] timeSeriesData) {
- INDArray input = Nd4j.create(timeSeriesData);
- INDArray output = model.output(input);
- double lastPrediction = output.getDouble(output.rows() - 1);
-
- // Predict blue ball number
- int blueBallPrediction = (int) Math.round(lastPrediction * 15) + 1; // Scale back to 1-16 range
- if (blueBallPrediction < 1) blueBallPrediction = 1;
- if (blueBallPrediction > 16) blueBallPrediction = 16;
-
- return blueBallPrediction;
- }
- }
对比了下,时间序列的相对容易让人相信,机器学习,不知道咋评价,大家可以试试。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。