当前位置:   article > 正文

面试大杀器:消息中间件如何实现消费吞吐量的百倍优化?_消息中间件消息太多怎么提高消费效率

消息中间件消息太多怎么提高消费效率

目录

(1)前请提示

(2)unack消息的积压问题

(3)如何解决unack消息的积压问题

(4)高并发场景下的内存溢出问题

(5)低吞吐量问题

(6)合理设置prefetch count

(7)阶段性总结

1、前情提示

这篇文章,我们将会对ack底层的delivery tag机制进行更加深入的分析,让大家理解的更加透彻一些。

面试时,如果被问到消息中间件数据不丢失问题的时候,可以更深入到底层,给面试官进行分析。

2、unack消息的积压问题

首先,我们要给大家介绍一下RabbitMQ的prefetch count这个概念。

大家看过上篇文章之后应该都知道了,对每个channel(其实对应了一个消费者服务实例,你大体可以这么来认为),RabbitMQ投递消息的时候,都是会带上本次消息投递的一个delivery tag的,唯一标识一次消息投递。

然后,我们进行ack时,也会带上这个delivery tag,基于同一个channel进行ack,ack消息里会带上delivery tag让RabbitMQ知道是对哪一次消息投递进行了ack,此时就可以对那条消息进行删除了。

大家先来看一张图,帮助大家回忆一下这个delivery tag的概念。

所以大家可以考虑一下,对于每个channel而言(你就认为是针对每个消费者服务实例吧&

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/喵喵爱编程/article/detail/783046
推荐阅读
相关标签
  

闽ICP备14008679号