当前位置:   article > 正文

用matlab处理英文数据集,中英文翻译数据集处理

中英文翻译数据集

给定数据集格式为[ 英文+"\t" + 中文

He knows better than to marry her.    他聰明到不會娶她。

He had hoped to succeed, but he didn't.    他本希望可以成功,但是他没有。

分割英文和中文分别到en_list和cn_list

train_file = 'data/translate_train.txt'

dev_file = 'data/translate_dev.txt'

def load_data(filename):

cn = []

en = []

num_examples = 0

with open(filename, 'r', encoding='utf-8') as f:

for line in f:

line = line.strip().split('\t')

en.append(["BOS"] + nltk.word_tokenize(line[0].lower()) + ['EOS'])

cn.append(["BOS"] + [c for c in line[1]] + ['EOS'])

return en, cn

train_en, train_cn = load_data(train_file)

dev_en, dev_cn = load_data(dev_file)

分别建立中英文字典

from collections import Counter

UNK_IDX = 0

PAD_IDX = 1

def build_dict(sentences, max_words=50000):

word_count = Counter()

for sentence in sentences:

for s in sentence:

word_count[s] += 1

ls = word_count.most_common(max_words)

total_words = len(ls) + 2

word_dict = {w[0]: index+2 for index, w in enumerate(ls)}

word_dict['UNK'] = UNK_IDX

word_dict['PAD'] = PAD_IDX

return word_dict, total_words

en_dict, en_total_words = build_dict(train_en)

cn_dict, cn_total_words = build_dict(train_cn)

inv_en_dict = {v: k for k, v in en_dict.items()}

inv_cn_dict = {v: k for k, v in cn_dict.items()}

根据建立的字典替换en_list和cn_list的中文和英文为数字

替换成数字之后需要安装英文字符的长度进行排序操作,根据sort_by_len决定是否排序操作。

def encode(en_sentences, cn_sentences, en_dict, cn_dict, sort_by_len=True):

length = len(en_sentences)

out_en_sentences = [[en_dict.get(w, UNK_IDX) for w in sent] for sent in en_sentences]

out_cn_sentences = [[cn_dict.get(w, UNK_IDX) for w in sent] for sent in cn_sentences]

def len_argsort(seq, descending=False):

return sorted(range(len(seq)), key=lambda x: len(seq[x]), reverse=descending)

if sort_by_len:

sorted_index = len_argsort(out_en_sentences)

out_en_sentences = [out_en_sentences[i] for i in sorted_index]

out_cn_sentences = [out_cn_sentences[i] for i in sorted_index]

return out_en_sentences, out_cn_sentences

train_en, train_cn = encode(train_en, train_cn, en_dict, cn_dict)

dev_en, dev_cn = encode(dev_en, dev_cn, en_dict, cn_dict)

划分多个batch

划分数据返回的数据格式为列表,列表成员为元组类型,元组成为为(X_data, X_len, Y_data, Y_len), 其中X_data表示batchSize个英文句子,Y_data为对应的中文翻译。

X_data.shape=(batchSize, en_seq)

x_len.shape=(batchSize, en_seq_len)

y_data.shape=(batchSize, cn_seq)

y_len.shape=(batchSize, cn_seq_len)

(1) 生成batch

指定数据个数和batchSize划分多个batch组,返回数据格式为list,list成员为由索引构成的list。

import numpy as np

def get_mini_batches(n, batch_size, shuffle=False):

idx_list = np.arange(0, n, batch_size) # [0, 1, ..., n-1]

if shuffle:

np.random.shuffle(idx_list)

mini_batches = []

for idx in idx_list:

mini_batches.append(np.arange(idx, min(idx + batch_size, n)))

return mini_batches

data_len = 100

batch_size = 12

"""

[ array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]),

array([12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]),

...

array([84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95]),

array([96, 97, 98, 99])

]

"""

print(get_mini_batches(data_len, batch_size))

(2) 统一每个batch的英文句子的长度,进行补零操作

import numpy as np

seqs = [[1, 3, 4, 12, 3],

[2, 34, 3, 1],

[12, 34, 1],

[2]]

def prepare_data(seqs):

lengths = [len(seq) for seq in seqs]

n_samples = len(seqs)

max_len = np.max(lengths)

x = np.zeros((n_samples, max_len)).astype('int32')

x_lengths = np.array(lengths).astype("int32")

for idx, seq in enumerate(seqs):

x[idx, :lengths[idx]] = seq

return x, x_lengths #x_mask

"""

x = [[ 1 3 4 12 3]

[ 2 34 3 1 0]

[12 34 1 0 0]

[ 2 0 0 0 0]]

x_len = [5 4 3 1]

"""

x, x_len = prepare_data(seqs)

print(x)

print(x_len)

(3) 构造数据集

en_sentences: 英文的list列表类型,成员为由字符索引构成的list

cn_sentences: 中文的list列表类型,成员为由字符索引构成的list

def gen_examples(en_sentences, cn_sentences, batch_size):

minibatches = get_mini_batches(len(en_sentences), batch_size)

all_ex = []

for minibatch in minibatches:

mb_en_sentences = [en_sentences[t] for t in minibatch]

mb_cn_sentences = [cn_sentences[t] for t in minibatch]

mb_x, mb_x_len = prepare_data(mb_en_sentences)

mb_y, mb_y_len = prepare_data(mb_cn_sentences)

all_ex.append((mb_x, mb_x_len, mb_y, mb_y_len))

return all_ex

数据集下载:

数据集链接:https://pan.baidu.com/s/1RgmRv80zQB71HSze8bQvwA

提取码:ih2c

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/喵喵爱编程/article/detail/907747
推荐阅读
相关标签
  

闽ICP备14008679号