当前位置:   article > 正文

决策树算法_一种还是一种今天很残酷

一种还是一种今天很残酷

决策树算法

决策树

定义

  • 是一种树形结构,本质是一颗由多个判断节点组成的树
  • 其中每个内部节点表示一个属性上的判断,
  • 每个分支代表一个判断结果的输出,
  • 最后每个叶节点代表一种分类结果

定义

系统越有序,熵值越低;系统越混乱或者分散,熵值越高

信息熵

是度量样本集合纯度最常用的一种指标。

公式

在这里插入图片描述

其中:Ent(D) 的值越小,则 D 的纯度越高.

条件熵

给定特征a条件下D的信息条件熵

公式

在这里插入图片描述

信息增益

Gain(D,a),定义为**集合D的信息熵Ent(D)给定特征a条件下D的信息条件熵Ent(D|a)Ent(D∣a)**之差

公式

在这里插入图片描述

信息增益率

信息增益准则对可取值数目较多的属性有所偏好,为减少这种偏好可能带来的不利影响,著名的 C4.5 决策树算法 [Quinlan, 1993J 不直接使用信息增益,而是使用"增益率" (gain ratio) 来选择最优划分属性.

**增益率:**增益率是用前面的信息增益Gain(D, a)和属性a对应的"固有值"(intrinsic value) [Quinlan , 1993J的比值来共同定义的。

公式

在这里插入图片描述

案例

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

基尼值和基尼指数

定义

CART 决策树 [Breiman et al., 1984] 使用"基尼指数" (Gini index)来选择划分属性.

公式

在这里插入图片描述

案例

在这里插入图片描述

差别

名称提出时间分支方式备注
ID31975信息增益ID3只能对离散属性的数据集构成决策树
C4.51993信息增益率优化后解决了ID3分支过程中总喜欢偏向选择值较多的 属性
CART1984Gini系数可以进行分类和回归,可以处理离散属性,也可以处理连续属性

C4.5算法

做出的改进(为什么使用C4.5要好)

(1) 用信息增益率来选择属性

(2) 可以处理连续数值型属性

(3)采用了一种后剪枝方法

(4)对于缺失值的处理

C4.5算法的优缺点

优点:

产生的分类规则易于理解,准确率较高。

缺点:

在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。

此外,C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。

CART算法

CART算法相比C4.5算法的分类方法,采用了简化的二叉树模型,同时特征选择采用了近似的基尼系数来简化计算。

C4.5不一定是二叉树,但CART一定是二叉树。

剪枝

  • 剪枝原因【了解】
    • 噪声、样本冲突,即错误的样本数据
    • 特征即属性不能完全作为分类标准
    • 巧合的规律性,数据量不够大。
  • 常用剪枝方法【知道】
    • 预剪枝
      • 在构建树的过程中,同时剪枝
        • 限制节点最小样本数
        • 指定数据高度
        • 指定熵值的最小值
    • 后剪枝
      • 把一棵树,构建完成之后,再进行从下往上的剪枝

特征工程-特征提取

特征提取

定义

将任意数据(如文本或图像)转换为可用于机器学习的数字特征

分类

  • 字典特征提取(特征离散化)
  • 文本特征提取
  • 图像特征提取

API

sklearn.feature_extraction
  • 1

字典特征提取

作用:对字典数据进行特征值化

  • sklearn.feature_extraction.DictVectorizer(sparse=True,…)
    • DictVectorizer.fit_transform(X)
      • X:字典或者包含字典的迭代器返回值
      • 返回sparse矩阵
    • DictVectorizer.get_feature_names() 返回类别名称

流程分析

  • 实例化类DictVectorizer
  • 调用fit_transform方法输入数据并转换(注意返回格式)
from sklearn.feature_extraction import DictVectorizer

def dict_demo():
    """
    对字典类型的数据进行特征抽取
    :return: None
    """
    data = [{'city': '北京','temperature':100}, {'city': '上海','temperature':60}, {'city': '深圳','temperature':30}]
    # 1、实例化一个转换器类
    transfer = DictVectorizer(sparse=False)
    # 2、调用fit_transform
    data = transfer.fit_transform(data)
    print("返回的结果:\n", data)
    # 打印特征名字
    print("特征名字:\n", transfer.get_feature_names())

    return None
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

有无sparse=False参数的结果

返回的结果:
   (0, 1)    1.0
  (0, 3)    100.0
  (1, 0)    1.0
  (1, 3)    60.0
  (2, 2)    1.0
  (2, 3)    30.0
特征名字:
 ['city=上海', 'city=北京', 'city=深圳', 'temperature']
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

返回的结果:
 [[   0.    1.    0.  100.]
 [   1.    0.    0.   60.]
 [   0.    0.    1.   30.]]
特征名字:
 ['city=上海', 'city=北京', 'city=深圳', 'temperature']
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

文本特征提取

作用:对文本数据进行特征值化

  • sklearn.feature_extraction.text.CountVectorizer(stop_words=[])
    • 返回词频矩阵
    • CountVectorizer.fit_transform(X)
      • X:文本或者包含文本字符串的可迭代对象
      • 返回值:返回sparse矩阵
    • CountVectorizer.get_feature_names() 返回值:单词列表
  • sklearn.feature_extraction.text.TfidfVectorizer

流程分析

  • 实例化类CountVectorizer
  • 调用fit_transform方法输入数据并转换 (注意返回格式,利用toarray()进行sparse矩阵转换array数组)

英文文本

from sklearn.feature_extraction.text import CountVectorizer

def text_count_demo():
    """
    对文本进行特征抽取,countvetorizer
    :return: None
    """
    data = ["life is short,i like like python", "life is too long,i dislike python"]
    # 1、实例化一个转换器类
    # transfer = CountVectorizer(sparse=False) # 注意,没有sparse这个参数
    transfer = CountVectorizer()
    # 2、调用fit_transform
    data = transfer.fit_transform(data)
    print("文本特征抽取的结果:\n", data.toarray())
    print("返回特征名字:\n", transfer.get_feature_names())

    return None
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

结果

文本特征抽取的结果:
 [[0 1 1 2 0 1 1 0]
 [1 1 1 0 1 1 0 1]]
返回特征名字:
 ['dislike', 'is', 'life', 'like', 'long', 'python', 'short', 'too']
  • 1
  • 2
  • 3
  • 4
  • 5

中文文本

需要进行分词处理

jieba分词处理

  • jieba.cut()
    • 返回词语组成的生成器

需要安装下jieba库

pip3 install jieba
  • 1

例子

from sklearn.feature_extraction.text import CountVectorizer
import jieba

def cut_word(text):
    """
    对中文进行分词
    "我爱北京天安门"————>"我 爱 北京 天安门"
    :param text:
    :return: text
    """
    # 用结巴对中文字符串进行分词
    text = " ".join(list(jieba.cut(text)))

    return text

def text_chinese_count_demo2():
    """
    对中文进行特征抽取
    :return: None
    """
    data = ["一种还是一种今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。",
            "我们看到的从很远星系来的光是在几百万年之前发出的,这样当我们看到宇宙时,我们是在看它的过去。",
            "如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。"]
    # 将原始数据转换成分好词的形式
    text_list = []
    for sent in data:
        text_list.append(cut_word(sent))
    print(text_list)

    # 1、实例化一个转换器类
    # transfer = CountVectorizer(sparse=False)
    transfer = CountVectorizer()
    # 2、调用fit_transform
    data = transfer.fit_transform(text_list)
    print("文本特征抽取的结果:\n", data.toarray())
    print("返回特征名字:\n", transfer.get_feature_names())

    return None
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38

结果

Building prefix dict from the default dictionary ...
Dumping model to file cache /var/folders/mz/tzf2l3sx4rgg6qpglfb035_r0000gn/T/jieba.cache
Loading model cost 1.032 seconds.
['一种 还是 一种 今天 很 残酷 , 明天 更 残酷 , 后天 很 美好 , 但 绝对 大部分 是 死 在 明天 晚上 , 所以 每个 人 不要 放弃 今天 。', '我们 看到 的 从 很 远 星系 来 的 光是在 几百万年 之前 发出 的 , 这样 当 我们 看到 宇宙 时 , 我们 是 在 看 它 的 过去 。', '如果 只用 一种 方式 了解 某样 事物 , 你 就 不会 真正 了解 它 。 了解 事物 真正 含义 的 秘密 取决于 如何 将 其 与 我们 所 了解 的 事物 相 联系 。']
Prefix dict has been built succesfully.
文本特征抽取的结果:
 [[2 0 1 0 0 0 2 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 2 0 1 0 2 1 0 0 0 1 1 0 0 1 0]
 [0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 3 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 1 0 1]
 [1 1 0 0 4 3 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 2 1 0 0 1 0 0 0]]
返回特征名字:
 ['一种', '不会', '不要', '之前', '了解', '事物', '今天', '光是在', '几百万年', '发出', '取决于', '只用', '后天', '含义', '大部分', '如何', '如果', '宇宙', '我们', '所以', '放弃', '方式', '明天', '星系', '晚上', '某样', '残酷', '每个', '看到', '真正', '秘密', '绝对', '美好', '联系', '过去', '还是', '这样']
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

用于分类需要用Tf-idf文本特征提取

Tf-idf文本特征提取

定义

如果某个词或短语在一篇文章中出现的概率高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。

作用

用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。

公式

  • 词频(term frequency,tf)指的是某一个给定的词语在该文件中出现的频率
  • 逆向文档频率(inverse document frequency,idf)是一个词语普遍重要性的度量。某一特定词语的idf,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取以10为底的对数得到

在这里插入图片描述

例子

"""
假如一篇文章的总词语数是100个,而词语"非常"出现了5次,那么"非常"一词在该文件中的词频就是5/100=0.05。
而计算文件频率(IDF)的方法是以文件集的文件总数,除以出现"非常"一词的文件数。
所以,如果"非常"一词在1,0000份文件出现过,而文件总数是10,000,000份的话,
其逆向文件频率就是lg(10,000,000 / 1,0000)=3。
最后"非常"对于这篇文档的tf-idf的分数为0.05 * 3=0.15
"""
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
'
运行

例子

from sklearn.feature_extraction.text import TfidfVectorizer
import jieba

def cut_word(text):
    """
    对中文进行分词
    "我爱北京天安门"————>"我 爱 北京 天安门"
    :param text:
    :return: text
    """
    # 用结巴对中文字符串进行分词
    text = " ".join(list(jieba.cut(text)))

    return text

def text_chinese_tfidf_demo():
    """
    对中文进行特征抽取
    :return: None
    """
    data = ["一种还是一种今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。",
            "我们看到的从很远星系来的光是在几百万年之前发出的,这样当我们看到宇宙时,我们是在看它的过去。",
            "如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。"]
    # 将原始数据转换成分好词的形式
    text_list = []
    for sent in data:
        text_list.append(cut_word(sent))
    print(text_list)

    # 1、实例化一个转换器类
    # transfer = CountVectorizer(sparse=False)
    transfer = TfidfVectorizer(stop_words=['一种', '不会', '不要'])
    # 2、调用fit_transform
    data = transfer.fit_transform(text_list)
    print("文本特征抽取的结果:\n", data.toarray())
    print("返回特征名字:\n", transfer.get_feature_names())

    return None
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38

结果

Building prefix dict from the default dictionary ...
Loading model from cache /var/folders/mz/tzf2l3sx4rgg6qpglfb035_r0000gn/T/jieba.cache
Loading model cost 0.856 seconds.
Prefix dict has been built succesfully.
['一种 还是 一种 今天 很 残酷 , 明天 更 残酷 , 后天 很 美好 , 但 绝对 大部分 是 死 在 明天 晚上 , 所以 每个 人 不要 放弃 今天 。', '我们 看到 的 从 很 远 星系 来 的 光是在 几百万年 之前 发出 的 , 这样 当 我们 看到 宇宙 时 , 我们 是 在 看 它 的 过去 。', '如果 只用 一种 方式 了解 某样 事物 , 你 就 不会 真正 了解 它 。 了解 事物 真正 含义 的 秘密 取决于 如何 将 其 与 我们 所 了解 的 事物 相 联系 。']
文本特征抽取的结果:
 [[ 0.          0.          0.          0.43643578  0.          0.          0.
   0.          0.          0.21821789  0.          0.21821789  0.          0.
   0.          0.          0.21821789  0.21821789  0.          0.43643578
   0.          0.21821789  0.          0.43643578  0.21821789  0.          0.
   0.          0.21821789  0.21821789  0.          0.          0.21821789
   0.        ]
 [ 0.2410822   0.          0.          0.          0.2410822   0.2410822
   0.2410822   0.          0.          0.          0.          0.          0.
   0.          0.2410822   0.55004769  0.          0.          0.          0.
   0.2410822   0.          0.          0.          0.          0.48216441
   0.          0.          0.          0.          0.          0.2410822
   0.          0.2410822 ]
 [ 0.          0.644003    0.48300225  0.          0.          0.          0.
   0.16100075  0.16100075  0.          0.16100075  0.          0.16100075
   0.16100075  0.          0.12244522  0.          0.          0.16100075
   0.          0.          0.          0.16100075  0.          0.          0.
   0.3220015   0.16100075  0.          0.          0.16100075  0.          0.
   0.        ]]
返回特征名字:
 ['之前', '了解', '事物', '今天', '光是在', '几百万年', '发出', '取决于', '只用', '后天', '含义', '大部分', '如何', '如果', '宇宙', '我们', '所以', '放弃', '方式', '明天', '星系', '晚上', '某样', '残酷', '每个', '看到', '真正', '秘密', '绝对', '美好', '联系', '过去', '还是', '这样']
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

总结

  • 特征提取【了解】
    • 将任意数据(如文本或图像)转换为可用于机器学习的数字特征
  • 特征提取分类:【了解】
    • 字典特征提取(特征离散化)
    • 文本特征提取
    • 图像特征提取
  • 字典特征提取【知道】
    • 字典特征提取就是对类别型数据进行转换
    • api:sklearn.feature_extraction.DictVectorizer(sparse=True,…)
      • aparse矩阵
        • 1.节省内容
        • 2.提高读取效率
      • 注意:
        • 对于特征当中存在类别信息的我们都会做one-hot编码处理
  • 文本特征提取(英文)【知道】
    • api:sklearn.feature_extraction.text.CountVectorizer(stop_words=[])
      • stop_words – 停用词
      • 注意:没有sparse这个参数
      • 单个字母,标点符号不做统计
  • 文本特征提取(中文)【知道】
    • 注意:
      • 1.在中文文本特征提取之前,需要对句子(文章)进行分词(jieba)
      • 2.里面依旧可以使用停用词,进行词语的限制
  • tfidf【知道】
    • 主要思想:
      • 如果某个词或短语在一篇文章中出现的概率高,并且在其他文章中很少出现,则认为此词或者短语具有很好的
      • 类别区分能力,适合用来分类
    • tfidf
      • tf – 词频
      • idf – 逆向文档频率
    • api:sklearn.feature_extraction.text.TfidfVectorizer
    • 注意:
      • 分类机器学习算法进行文章分类中前期数据处理方式

决策树算法API

  • class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, max_depth=None,random_state=None)
    • criterion
      • 特征选择标准
      • “gini"或者"entropy”,前者代表基尼系数,后者代表信息增益。一默认"gini",即CART算法。
    • min_samples_split
      • 内部节点再划分所需最小样本数
      • 这个值限制了子树继续划分的条件,如果某节点的样本数少于min_samples_split,则不会继续再尝试选择最优特征来进行划分。 默认是2.如果样本量不大,不需要管这个值。如果样本量数量级非常大,则推荐增大这个值。我之前的一个项目例子,有大概10万样本,建立决策树时,我选择了min_samples_split=10。可以作为参考。
    • min_samples_leaf
      • 叶子节点最少样本数
      • 这个值限制了叶子节点最少的样本数,如果某叶子节点数目小于样本数,则会和兄弟节点一起被剪枝。 默认是1,可以输入最少的样本数的整数,或者最少样本数占样本总数的百分比。如果样本量不大,不需要管这个值。如果样本量数量级非常大,则推荐增大这个值。之前的10万样本项目使用min_samples_leaf的值为5,仅供参考。
    • max_depth
      • 决策树最大深度
      • 决策树的最大深度,默认可以不输入,如果不输入的话,决策树在建立子树的时候不会限制子树的深度。一般来说,数据少或者特征少的时候可以不管这个值。如果模型样本量多,特征也多的情况下,推荐限制这个最大深度,具体的取值取决于数据的分布。常用的可以取值10-100之间
    • random_state
      • 随机数种子

案例(泰坦尼克号)

有些人比其他人更容易生存,例如妇女,儿童和上流社会。

运用机器学习工具来预测哪些乘客幸免于悲剧

步骤分析

  • 1.获取数据
  • 2.数据基本处理
    • 2.1 确定特征值,目标值
    • 2.2 缺失值处理
    • 2.3 数据集划分
  • 3.特征工程(字典特征抽取)
  • 4.机器学习(决策树)
  • 5.模型评估

代码实现

  • 导入需要的模块
import pandas as pd
import numpy as np
from sklearn.feature_extraction import DictVectorizer
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, export_graphviz
  • 1
  • 2
  • 3
  • 4
  • 5
  • 1.获取数据
# 1、获取数据
titan = pd.read_csv("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt")
  • 1
  • 2
  • 2.数据基本处理

    • 2.1 确定特征值,目标值
    x = titan[["pclass", "age", "sex"]]
    y = titan["survived"]
    
    • 1
    • 2
    • 2.2 缺失值处理
    # 缺失值需要处理,将特征当中有类别的这些特征进行字典特征抽取
    x['age'].fillna(x['age'].mean(), inplace=True)
    
    • 1
    • 2
    • 2.3 数据集划分
    x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=22)
    
    • 1
  • 3.特征工程(字典特征抽取)

特征中出现类别符号,需要进行one-hot编码处理(DictVectorizer)

x.to_dict(orient=“records”) 需要将数组特征转换成字典数据

# 对于x转换成字典数据x.to_dict(orient="records")
# [{"pclass": "1st", "age": 29.00, "sex": "female"}, {}]

transfer = DictVectorizer(sparse=False)

x_train = transfer.fit_transform(x_train.to_dict(orient="records"))
x_test = transfer.fit_transform(x_test.to_dict(orient="records"))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 4.决策树模型训练和模型评估

决策树API当中,如果没有指定max_depth那么会根据信息熵的条件直到最终结束。这里我们可以指定树的深度来进行限制树的大小

# 4.机器学习(决策树)
estimator = DecisionTreeClassifier(criterion="entropy", max_depth=5)
estimator.fit(x_train, y_train)

# 5.模型评估
estimator.score(x_test, y_test)

estimator.predict(x_test)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

决策树的结构是可以直接显示

决策树可视化

保存树的结构到dot文件

  • sklearn.tree.export_graphviz() 该函数能够导出DOT格式
    • tree.export_graphviz(estimator,out_file='tree.dot’,feature_names=[‘’,’’])
export_graphviz(estimator, out_file="./data/tree.dot", feature_names=['age', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', '女性', '男性'])
  • 1

dot文件当中的内容如下

digraph Tree {
node [shape=box] ;
0 [label="petal length (cm) <= 2.45\nentropy = 1.584\nsamples = 112\nvalue = [39, 37, 36]"] ;
1 [label="entropy = 0.0\nsamples = 39\nvalue = [39, 0, 0]"] ;
0 -> 1 [labeldistance=2.5, labelangle=45, headlabel="True"] ;
2 [label="petal width (cm) <= 1.75\nentropy = 1.0\nsamples = 73\nvalue = [0, 37, 36]"] ;
0 -> 2 [labeldistance=2.5, labelangle=-45, headlabel="False"] ;
3 [label="petal length (cm) <= 5.05\nentropy = 0.391\nsamples = 39\nvalue = [0, 36, 3]"] ;
2 -> 3 ;
4 [label="sepal length (cm) <= 4.95\nentropy = 0.183\nsamples = 36\nvalue = [0, 35, 1]"] ;
3 -> 4 ;
5 [label="petal length (cm) <= 3.9\nentropy = 1.0\nsamples = 2\nvalue = [0, 1, 1]"] ;
4 -> 5 ;
6 [label="entropy = 0.0\nsamples = 1\nvalue = [0, 1, 0]"] ;
5 -> 6 ;
7 [label="entropy = 0.0\nsamples = 1\nvalue = [0, 0, 1]"] ;
5 -> 7 ;
8 [label="entropy = 0.0\nsamples = 34\nvalue = [0, 34, 0]"] ;
4 -> 8 ;
9 [label="petal width (cm) <= 1.55\nentropy = 0.918\nsamples = 3\nvalue = [0, 1, 2]"] ;
3 -> 9 ;
10 [label="entropy = 0.0\nsamples = 2\nvalue = [0, 0, 2]"] ;
9 -> 10 ;
11 [label="entropy = 0.0\nsamples = 1\nvalue = [0, 1, 0]"] ;
9 -> 11 ;
12 [label="petal length (cm) <= 4.85\nentropy = 0.191\nsamples = 34\nvalue = [0, 1, 33]"] ;
2 -> 12 ;
13 [label="entropy = 0.0\nsamples = 1\nvalue = [0, 1, 0]"] ;
12 -> 13 ;
14 [label="entropy = 0.0\nsamples = 33\nvalue = [0, 0, 33]"] ;
12 -> 14 ;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

决策树优缺点总结【知道】

  • 优点:
    • 简单的理解和解释,树木可视化。
  • 缺点:
    • 决策树学习者可以创建不能很好地推广数据的过于复杂的树,容易发生过拟合。
  • 改进:
    • 减枝cart算法
    • 随机森林(集成学习的一种)

回归决策树

数据类型分两类:连续型数据和离散型数据

决策树分两类:

  • 分类决策树和回归决策树。
  • 前者主要用于处理离散型数据,后者主要用于处理连续型数据。

算法描述

  • 输入:训练数据集D:
  • 输出:回归树f(x)f(x).
  • 在训练数据集所在的输入空间中,递归的将每个区域划分为两个子区域并决定每个子区域上的输出值,构建二叉决策树:

nsamples = 1\nvalue = [0, 1, 0]"] ;
9 -> 11 ;
12 [label=“petal length (cm) <= 4.85\nentropy = 0.191\nsamples = 34\nvalue = [0, 1, 33]”] ;
2 -> 12 ;
13 [label=“entropy = 0.0\nsamples = 1\nvalue = [0, 1, 0]”] ;
12 -> 13 ;
14 [label=“entropy = 0.0\nsamples = 33\nvalue = [0, 0, 33]”] ;
12 -> 14 ;
}


### 决策树优缺点总结【知道】

- 优点:
  - 简单的理解和解释,树木可视化。
- 缺点:
  - 决策树学习者可以创建不能很好地推广数据的过于复杂的树,容易发生过拟合。
- 改进:
  - 减枝cart算法
  - 随机森林(集成学习的一种)

## 回归决策树

数据类型分两类:**连续型数据和离散型数据**

决策树分两类:

- **分类决策树和回归决策树。**
- **前者主要用于处理离散型数据,后者主要用于处理连续型数据。**

## 算法描述

- 输入:训练数据集D:
- 输出:回归树f(x)*f*(*x*).
- 在训练数据集所在的输入空间中,递归的将每个区域划分为两个子区域并决定每个子区域上的输出值,构建二叉决策树

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/喵喵爱编程/article/detail/981588
推荐阅读
相关标签
  

闽ICP备14008679号