赞
踩
Sift和Surf算法实现两幅图像拼接的过程是一样的,主要分为4大部分:
1. 特征点提取和描述
2. 特征点配对,找到两幅图像中匹配点的位置
3. 通过配对点,生成变换矩阵,并对图像1应用变换矩阵生成对图像2的映射图像
4. 图像2拼接到映射图像上,完成拼接
过程1、2、3没啥好说的了,关键看看步骤4中的拼接部分。这里先采用比较简单一点的拼接方式来实现:
1. 找到图像1和图像2中最强的匹配点所在的位置
2. 通过映射矩阵变换,得到图像1的最强匹配点经过映射后投影到新图像上的位置坐标
3. 在新图像上的最强匹配点的映射坐标处,衔接两幅图像,该点左侧图像完全是图像1,右侧完全是图像2
这里拼接的正确与否完全取决于特征点的选取,如果选取的是错误匹配的特征点,拼接一定失败,所以这里选了排在第一个的最强的匹配点,作为拼接点。
- // siftandsurf.cpp : 定义控制台应用程序的入口点。
- //
-
- #include "stdafx.h"
-
-
- #include "highgui/highgui.hpp"
- #include "opencv2/nonfree/nonfree.hpp"
- #include "opencv2/legacy/legacy.hpp"
-
- using namespace cv;
-
- //计算原始图像点位在经过矩阵变换后在目标图像上对应位置
- Point2f getTransformPoint(const Point2f originalPoint, const Mat &transformMaxtri);
-
- int main(int argc, char *argv[])
- {
- argv[1] = "拼接图像1.jpg";
- argv[2] = "拼接图像2.jpg";
- Mat image01 = imread(argv[1]);
- Mat image02 = imread(argv[2]);
- imshow("拼接图像1", image01);
- imshow("拼接图像2", image02);
-
- //灰度图转换
- Mat image1, image2;
- cvtColor(image01, image1, CV_RGB2GRAY);
- cvtColor(image02, image2, CV_RGB2GRAY);
-
- //提取特征点
- SiftFeatureDetector siftDetector(800); // 海塞矩阵阈值
- vector<KeyPoint> keyPoint1, keyPoint2;
- siftDetector.detect(image1, keyPoint1);
- siftDetector.detect(image2, keyPoint2);
-
- //特征点描述,为下边的特征点匹配做准备
- SiftDescriptorExtractor siftDescriptor;
- Mat imageDesc1, imageDesc2;
- siftDescriptor.compute(image1, keyPoint1, imageDesc1);
- siftDescriptor.compute(image2, keyPoint2, imageDesc2);
-
- //获得匹配特征点,并提取最优配对
- FlannBasedMatcher matcher;
- vector<DMatch> matchePoints;
- matcher.match(imageDesc1, imageDesc2, matchePoints, Mat());
- sort(matchePoints.begin(), matchePoints.end()); //特征点排序
- //获取排在前N个的最优匹配特征点
- vector<Point2f> imagePoints1, imagePoints2;
- for (int i = 0; i<10; i++)
- {
- imagePoints1.push_back(keyPoint1[matchePoints[i].queryIdx].pt);
- imagePoints2.push_back(keyPoint2[matchePoints[i].trainIdx].pt);
- }
-
- //获取图像1到图像2的投影映射矩阵,尺寸为3*3
- Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);
- Mat adjustMat = (Mat_<double>(3, 3) << 1.0, 0, image01.cols, 0, 1.0, 0, 0, 0, 1.0);
- Mat adjustHomo = adjustMat*homo;
-
- //获取最强配对点在原始图像和矩阵变换后图像上的对应位置,用于图像拼接点的定位
- Point2f originalLinkPoint, targetLinkPoint, basedImagePoint;
- originalLinkPoint = keyPoint1[matchePoints[0].queryIdx].pt;
- targetLinkPoint = getTransformPoint(originalLinkPoint, adjustHomo);
- basedImagePoint = keyPoint2[matchePoints[0].trainIdx].pt;
-
- //图像配准
- Mat imageTransform1;
- warpPerspective(image01, imageTransform1, adjustMat*homo, Size(image02.cols + image01.cols + 110, image02.rows));
-
- //在最强匹配点左侧的重叠区域进行累加,是衔接稳定过渡,消除突变
- Mat image1Overlap, image2Overlap; //图1和图2的重叠部分
- image1Overlap = imageTransform1(Rect(Point(targetLinkPoint.x - basedImagePoint.x, 0), Point(targetLinkPoint.x, image02.rows)));
- image2Overlap = image02(Rect(0, 0, image1Overlap.cols, image1Overlap.rows));
- Mat image1ROICopy = image1Overlap.clone(); //复制一份图1的重叠部分
- for (int i = 0; i<image1Overlap.rows; i++)
- {
- for (int j = 0; j<image1Overlap.cols; j++)
- {
- double weight;
- weight = (double)j / image1Overlap.cols; //随距离改变而改变的叠加系数
- image1Overlap.at<Vec3b>(i, j)[0] = (1 - weight)*image1ROICopy.at<Vec3b>(i, j)[0] + weight*image2Overlap.at<Vec3b>(i, j)[0];
- image1Overlap.at<Vec3b>(i, j)[1] = (1 - weight)*image1ROICopy.at<Vec3b>(i, j)[1] + weight*image2Overlap.at<Vec3b>(i, j)[1];
- image1Overlap.at<Vec3b>(i, j)[2] = (1 - weight)*image1ROICopy.at<Vec3b>(i, j)[2] + weight*image2Overlap.at<Vec3b>(i, j)[2];
- }
- }
- Mat ROIMat = image02(Rect(Point(image1Overlap.cols, 0), Point(image02.cols, image02.rows))); //图2中不重合的部分
- ROIMat.copyTo(Mat(imageTransform1, Rect(targetLinkPoint.x, 0, ROIMat.cols, image02.rows))); //不重合的部分直接衔接上去
- namedWindow("拼接结果", 0);
- imshow("拼接结果", imageTransform1);
- imwrite("D:\\拼接结果.jpg", imageTransform1);
- waitKey();
- return 0;
- }
-
- //计算原始图像点位在经过矩阵变换后在目标图像上对应位置
- Point2f getTransformPoint(const Point2f originalPoint, const Mat &transformMaxtri)
- {
- Mat originelP, targetP;
- originelP = (Mat_<double>(3, 1) << originalPoint.x, originalPoint.y, 1.0);
- targetP = transformMaxtri*originelP;
- float x = targetP.at<double>(0, 0) / targetP.at<double>(2, 0);
- float y = targetP.at<double>(1, 0) / targetP.at<double>(2, 0);
- return Point2f(x, y);
- }
-
转载自:https://blog.csdn.net/dcrmg/article/details/52629856
图像拼接(十一):双摄像头实时拼接+stitching_detailed
https://blog.csdn.net/czl389/article/details/60769026
opencv学习(三十八)之图像模板匹配matchTemplate()
https://blog.csdn.net/keith_bb/article/details/70050080
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。