当前位置:   article > 正文

10.【机器学习】十大算法之一决策树(Decision tree)算法原理讲解_决策树算法

决策树算法

一·摘要

在这里插入图片描述

决策树是一种广泛应用于机器学习和数据分析领域的算法,它特别适用于分类和回归问题。作为一种监督学习算法,决策树通过模仿人类决策过程来构建预测模型。它的核心思想是从数据特征中选择最优的属性作为决策节点,然后根据这个属性的值将数据分成几个子集,这个过程递归地在每个子集上重复,直到满足某个停止条件。

决策树的结构可以形象地看作是一棵树,其中根节点代表整个数据集,内部节点代表数据的一个特征属性,叶节点则代表最终的决策结果。从根节点到叶节点的每条路径都代表一个规则,这些规则合在一起就形成了一个完整的决策过程。在分类问题中,决策树通过一系列的问题将数据分到不同的类别中;而在回归问题中,决策树则预测一个连续的数值。

构建决策树的过程通常包括特征选择、决策节点的确定、树的生成和剪枝。特征选择的目的是找到数据中最具区分能力的特征,决策节点的确定则是基于这个特征将数据集分割成更小的、更同质的子集。树的生成是递归地应用特征选择和决策节点确定的过程,直到满足停止条件,比如达到某个树深度、所有数据点都属于同一类别或某一类的误差低于预设阈值。剪枝是决策树的优化过程,目的是防止过拟合,通过移除或合并一些节点来简化树的结构。

二·个人简介

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/在线问答5/article/detail/1014543
推荐阅读
相关标签