赞
踩
- 解决了服务拆分之后的服务治理问题:Nacos解决了服务治理问题
- OpenFeign解决了服务之间的远程调用问题
- 网关与前端进行交互,基于网关的过滤器解决了登录校验的问题
流量控制:避免因为突发流量而导致的服务宕机。
隔离和降级:避免微服务出现雪崩
避免非法的请求进入微服务当中
避免因为服务的重启而导致这些规则的丢失
微服务中,服务间调用关系错综复杂,一个微服务往往依赖于其它多个微服务。
如图,服务消费者调用服务提供者,如果服务提供者发生了故障,由于当前服务消费者应用的部分业务依赖于服务提供者,导致服务消费者的业务请求会被阻塞,因为服务消费者要等待服务提供者结果的返回,请求被阻塞,用户自然不会得到响应,Tomcat的这个线程也不会释放,因为阻塞它就不会释放Tomcat的连接,于是越来越多的用户请求到来,越来越多的线程会被阻塞,由于Tomcat服务器支持的线程和并发数有限,业务请求一直被阻塞,会导致服务器资源耗尽,从而导致其它业务请求请求不进来,因为由于当前服务挂了,其它服务调用当前服务无法得到当前服务的响应,这时候其它服务就会出现多条线程阻塞等待,此时其它服务若有大量的 业务请求涌入,就会导致大量线程积压,最终导致其它服务也挂掉,导致其它服务也故障不可用了,由于服务与服务之间的依赖性,服务之间有关联,故障会传播,形成级联失败,进而导致整个微服务系统造成灾难性的严重后果,导致整个调用链上的所有服务都挂掉,此时服务故障的"雪崩效应"就发生了 => 一个服务故障导致依赖于它的服务最终也出现故障了,导致依赖于它的服务最终被拖垮
在微服务架构中,服务与服务之间会通过远程调用的方式进行通信,一旦微服务调用链路中的某个服务发生故障或某个资源出现不稳定,例如,表现为timeout - 业务接口超时响应,业务接口响应时间过长,出现故障或阻塞,会导致其依赖服务(即调用该服务的其它服务)由于没有做好异常处理,导致自身也会发生故障,此时就会发生故障的蔓延,引起整个链路中的所有微服务都不可用,也就是引起整个链路中的所有微服务都无法访问的情况,最终导致系统瘫痪,导致调用链中的所有服务级联失败,这就是服务雪崩问题或者叫级联失败问题。
这些方案或多或少都会导致服务的体验上略有下降,比如
但通过这些方案,服务的健壮性得到了提升。
容错保护就是当某个服务发生故障时,通过断路器的监控,给调用返回一个错误响应,而不是长时间的等待,这样就不会使得调用方由于长时间得不到响应而占用线程,从而防止故障的蔓延。
断路器:Spring Cloud Circuit Breaker
Hystrix和Sentinel都是非常成熟可靠的服务保护工具,早期比较流行的是Hystrix框架,但目前国内使用最广泛的还是阿里巴巴的Sentinel服务保护框架(是Spring Cloud Alibaba的组件之一),这里我们做下对比:
关于Hystrix和Sentinel的对比,在Sentinel的官网上有一篇文章写的很详细:
Sentinel底层是基于信号量来实现资源隔离,而Hystrix提供两种隔离策略,Hystrix支持线程池隔离或信号量隔离,但默认情况下都是使用线程池隔离来实现资源隔离。
线程池隔离模式下需要配置线程池对应的参数,信号量隔离模式下需要配置最大并发数。
- 线程池隔离:在一个业务请求进入Tomcat以后,它会给每一个被隔离的业务创建一个独立的线程池,Hystrix也一样,Hystrix的线程池隔离针对不同的资源分别创建不同的线程池,这样,不同的服务调用都发生在不同的线程池中,在线程池阻塞情况时可以快速失败,线程池隔离的好处是隔离度比较高,资源和资源之间做到了最彻底的隔离,可以针对某个资源的线程池去进行处理而不影响其它资源,但是代价就是线程上下文切换的overhead比较大,线程上下文切换会有非常大的损耗,增加了线程切换的成本,特别是对低延时的调用有比较大的影响。另外,还需要预先给各个资源做线程池大小的分配,实际情况下,线程池隔离并没有带来非常多的好处,最直接的影响,就是会让机器资源碎片化。
- Hystrix的信号量隔离限制对某个资源调用的并发数,这样的隔离非常轻量级,仅限制对某个资源调用的并发数,而不是显式的去创建线程池(也就意味着不会去创建新的线程,这样就减少了线程的创建),所以overhead比较小,但是效果不错,但缺点是无法对慢调用自动进行降级,只能等待客户端自己超时,因此仍然可能会出现级联阻塞的情况。
- 而Sentinel可以通过并发线程数模式的流量控制来提供信号量隔离的功能,并且结合基于响应时间的熔断降级模式,可以在不稳定资源的平均响应时间比较高的时候自动降级,防止过多的慢调用占满并发数,影响整个系统。
Sentinel的线程隔离就是基于信号量隔离来实现的,而Hystrix两种都支持,但默认是基于线程池隔离。
- Sentinel和Hystrix的熔断降级功能本质上都是基于熔断器或断路器模式;
Sentinel和Hystrix都支持基于失败比率(异常比率)的熔断降级,在调用达到一定量级并且失败比率达到设定的阈值时自动进行熔断,此时所有对该资源的调用都会被block,直到过了指定的时间窗口后才启发性的恢复;
- 而且Sentinel还支持基于平均响应时间的熔断降级,可以在服务响应时间RT持续飙高的时候自动熔断,拒绝掉更多的请求,直到一段时间后才恢复,这样可以防止调用非常慢,也就是防止慢调用造成级联阻塞的情况。
1. 轻量级、高性能
- Sentinel非常轻量级,其核心sentinel-core没有任何多余依赖,打包后只有不到200KB,非常轻量级,同时Sentinel非常高性能,引入Sentinel带来的性能损耗非常小,只有在业务单机量级超过25wQPS的时候才会有一些显著的影响,单机QPS不太大的时候损耗几乎可以忽略不计。
2. 流量控制
- Sentinel可以针对不同的调用关系,以不同的运行指标(如QPS、并发调用数、系统负载)为基准,对系统资源的调用进行流量控制,将随机的请求调整成合适的形状。
Sentinel支持多样化的流量整形策略,在QPS过高时可以自动将流量调整成合适的形状,常用的有:
- 直接拒绝模式:即超出的请求直接拒绝。
- 慢启动预热模式:当流量激增的时候,控制流量通过的速率,让通过的流量缓慢增加,在一定时间内逐渐增加到阈值上限,给冷系统一个预热的时间,避免冷系统被压垮。
- 匀速器模式:利用Leaky Bucket漏桶算法实现的匀速模式,严格控制了请求通过的时间间隔,同时推积的请求将会排队,超过超时时长的请求直接被拒绝。
Sentinel还支持调用关系的限流,包括基于调用方限流、基于调用链入口限流、关联流量限流等,依托于Sentinel强大的调用链路统计信息,可以提供精准的不同维度的限流。
3. 系统负载保护或系统自适应保护
- 当系统负载较高时,如果仍持续让请求进入,可能会导致系统崩溃,无法响应。
- 在集群环境下,网络负载均衡会把本应这台机器承载的流量转发到其它的机器上去,如果这个时候其它的汲取也处在一个边缘状态的时候,这个时候增加的流量就会导致这台机器也崩溃,最后导致整个集群不可用,针对这个情况,Sentinel提供了对应的保护机制,让系统的入口流量和系统的负载达到一个平衡,保证系统在能力范围之内处理最多的请求。
4. 实时监控和控制面板
- Sentinel控制台(Dashboard)提供了机器发现、配置规则、查看实时监控、查看调用链路信息等功能,使得用户可以非常方便的去查看监控和进行配置。
5. 生态
- Sentinel目前已经针对Servlet、Dubbo、Spring Boot/Spring Cloud、gRPC等进行了适配,用户只需引入相应引来并进行简单配置即可非常的方便的享受Sentinel的高可用流量防护能力。
随着微服务的流行,服务和服务之间的稳定性变得越来越重要,Sentinel是面向分布式、多语言异构化服务架构的流量治理组件,主要以流量为切入点,从流量路由、流量控制、熔断降级、系统自适应过载保护、热点流量防护等多个维度来帮助开发者保障微服务的稳定性。
Sentinel的客户端依赖底层会和控制台建立连接,建立连接以后就可以做实时的监控,它可以监控微服务内部的所有接口的一个运行情况等。
Sentinel和Hystrix的原则是一致的:当调用链路中的某个资源出现不稳定,例如,表现为 timeout,异常比例升高的时候,则对这个资源的调用进行限制,并让请求快速失败,避免影响到其它的资源,最终产生雪崩的效果。
在限制的手段上,Sentinel和Hystrix采取了完全不一样的方法。
和资源池隔离的方法不同,Sentinel通过限制资源并发线程的数量,来减少不稳定资源对其它资源的影响,这样不但没有线程切换的损耗,也不需要您预先分配线程池的大小。当某个资源出现不稳定的情况下,例如RT响应时间变长,对资源的直接影响就是会造成线程数的逐步堆积,当线程数在特定资源上堆积到一定的数量之后,对该资源的新请求就会被拒绝,堆积的线程完成任务后才开始继续接收请求。
使用线程池隔离:当服务提供者不可用时,就会出现服务调用者的线程池里所有的线程都因等待响应而被阻塞,这个时候就会有上下文切换的开销。。。。
当线程池阻塞时,你其它所有请求打进来也会被阻塞,除非当线程池能够处理新请求了,那你此时被阻塞的线程就要被唤醒,这个时候就会有线程上下文的切换开销;而控制线程并发数就是你一旦达到我这个线程上限的阈值,你还来请求,我就直接给你拒绝掉,这样也就不存在什么阻塞了,自然不会有线程上下文切换的开销。
除了对并发线程数进行控制以外,Sentinel还可以通过响应时间来快速降级不稳定的资源,当依赖的资源出现响应时间过长后,所有对该资源的访问都会被直接拒绝,直到过了指定的时间窗口之后才重新恢复。
官网详情:
Sentinel官方提供了UI控制台,方便我们对系统做限流设置,其实就是下载一个jar包。
1. 将其拷贝到一个你能记住的非中文、不包含特殊字符的目录下,重命名为sentinel-dashboard,然后运行命令:
java -jar sentinel-dashboard.jar
2. jar包运行完成以后它底层其实就是一个基于Spring Boot的Web应用,然后访问:localhost:8080 即可看到控制台页面,默认的账户和密码都是sentinel
注意:Sentinel控制台目前仅支持单机部署,启动Sentinel控制台需要JDK版本为1.8及以上版本。
登录后,即可看到控制台,但是登录后,我们发现一片空白,什么都没有:
默认会监控sentinel-dashboard服务本身。。。。。
- 系统规则是对当前应用所在的服务器的一种保护,不过这个保护的规则只对Linux系统有效,并且系统规则仅对入口流量生效,入口流量指的是进入应用的流量。
- 集群流控是指把这种限流的规则放在集群的场景下去做判断,而不再是针对单个机器。
我们在微服务模块中整合Sentinel,并且连接sentinel-dashboard控制台,步骤如下:
1. 引入Sentinel依赖
- <!-- 引入sentinel依赖-->
- <dependency>
- <groupId>com.alibaba.cloud</groupId>
- <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
- </dependency>
2. 配置Sentinel的控制台地址,修改application.yaml文件,添加下面内容:
- spring:
- cloud:
- sentinel:
- transport:
- dashboard: localhost:8080
3. 重启微服务,访问微服务的任意端点,触发sentinel监控
Spring MVC的任意一个Controller接口都是一个端点。
雪崩问题虽然有四种方案,但是限流是避免服务因突发的流量而导致服务发生故障,是对微服务雪崩问题的预防。我们先学习这种模式。
树状视图:
默认情况下Sentinel会把接口路径作为簇点资源的名称,因此,我们看到/carts这个接口路径就是一个簇点,我们可以对其进行流控(流量控制 - 限流)、熔断(熔断降级)、热点(热点参数限流,是限流的一种)、授权(请求的权限控制、隔离)等保护措施 => 这些都是针对簇点链路中的资源来设置的,我们可以点击对应资源后面的按钮来设置规则。
不过,需要注意的是,我们的Spring MVC接口是按照RESTful风格设计,RESTful风格的API请求路径一般都相同,这会导致簇点资源重复,因此购物车的查询、删除、修改等接口全部都是/carts路径:
默认情况下Sentinel会把路径作为簇点资源的名称,无法区分路径相同但请求方式不同的接口,查询、删除、修改等都被识别为一个簇点资源,这显然是不合适的。
- spring:
- cloud:
- sentinel:
- transport:
- dashboard: localhost:8090
- http-method-specify: true # 开启请求方式前缀
然后,重启服务,通过页面访问购物车的相关接口,可以看到sentinel控制台的簇点链路发生了变化:
每一个资源名都是一个EndPoint端点~!
流量控制,其原理是监控应用流量的QPS(每秒查询率)或并发线程数等指标,当达到执行的阈值时对流量进行控制,以避免被瞬时的流量高峰冲垮,从而保障应用的高可用性。
表单中可以填写流控规则或限流规则,如下:
资源名:唯一名称,默认是请求路径,可自定义
针对来源:指定对哪个微服务进行限流,默认指default,意思是不区分来源,全部限制
其含义是限制 /order/{orderId}这个簇点资源的单机QPS为1,即每秒只允许1次请求,超出的请求会被拦截并报错。
可以Apache Jmeter官网下载,地址:Apache JMeter - Download Apache JMeter
因为下载的是zip包,解压缩即可使用,目录结构如下:
其中的bin目录就是执行的脚本,其中包含启动脚本:
双击即可运行,但是有两点注意:
启动速度比较慢,要耐心等待
启动后黑窗口不能关闭,否则JMeter也跟着关闭了
JMeter是用Java写的~!
默认JMeter的语言是英文,需要设置:
效果:
注意:上面的配置只能保证本次运行是中文,如果要永久中文,需要修改JMeter的配置文件。
打开JMeter文件夹,在bin目录中找到 jmeter.properties,添加下面配置:
language=zh_CN
注意:前面不要出现#,#代表注释,另外这里是下划线,不是中划线
在Test Plan测试计划上点鼠标右键,选择添加 > 线程(用户) > 线程组:
在新增的线程组中,填写线程信息:
给线程组点鼠标右键,添加取样器 => HTTP请求:
编写取样器内容:
添加监听器 => 添加汇总报告:
添加监听器 => 查看结果树:
运行:
注意,不要点击菜单中的执行按钮来运行。
汇总报告结果:
结果树:
可以看到,成功的请求每次只有5个。
在添加限流规则时,点击高级选项,可以选择三种流控模式:
直接:统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式
关联:统计与当前资源相关的另一个资源(即关联资源),当关联资源触发阈值时,就会对当前资源限流,避免影响关联资源 => 给谁限流,就给谁加流控规则 高优先级资源触发阈值,对低优先级资源限流。
链路:统计从指定链路(即入口资源)访问到本资源的请求(是对请求来源的一种统计),只统计从指定资源进入当前资源的请求 ,触发阈值时,对指定链路限流,是对请求来源的限流
当两个资源之间具有资源争抢或者依赖关系的时候,这两个资源便具有了关联,比如对数据库同一个字段的读操作和写操作存在争抢,读操作过于频繁,自然就会影响写操作 ,反之亦然,如果放任读写操作争抢资源,则争抢本身带来的开销会降低整体的吞吐量,此时就可以使用关联模式限流来避免具有关联关系的资源之间过度的争抢。
Blocked by Sentinel(flow limiting)
满足下面两个条件可以使用关联模式:
链路流控模式指的是当从某个接口过来的资源达到限流条件时,开启限流。
- @SentinelResource("goods")
- public void queryGoods() {
- System.err.println("查询商品");
- }
链路模式中,是对不同来源的两个链路做监控。
但是Sentinel默认会给进入SpringMVC的所有请求设置同一个root资源,会导致链路模式失效。
Sentinel默认会将Controller方法做context上下文整合,导致链路模式的流控失效,我们需要关闭这种对SpringMVC的资源聚合,需要修改application.yml,添加配置:
- spring:
- cloud:
- sentinel:
- web-context-unify: false # 关闭context整合
在流控的高级选项中,还有一个流控效果选项,流控效果是指请求达到流控阈值时应该采取的措施,包括三种:
配置流控规则:
之前的限流是统计访问某个资源的所有请求,判断是否超过QPS阈值;
而热点参数限流是分别统计参数值相同的请求,判断是否超过QPS阈值 => 热点参数限流是一种更细粒度的限流。
注意事项:
Sentinel支持的雪崩解决方案:线程隔离 & 熔断降级
两者的优缺点:
扇出:现在请求到我这个服务了,我这个服务又依赖于N个其它的服务,那么这个就叫扇出。
扇出越高,调用的越多,我需要开启的线程也越多,那我的消耗也就越大。
- feign:
- sentinel:
- enabled: true # 开启feign对sentinel的支持或整合
接着重启服务,在控制台就可以看到该服务的业务接口自动变成了一个簇点资源。
在弹出的表单中填写下面内容:
注意,这里勾选的是并发线程数限制,这样该接口能使用的线程资源被限制了,也就是说这个查询功能最多使用5个线程,而不是5QPS。如果查询商品的接口每秒处理2个请求,则5个线程的实际QPS在10左右,而超出的请求自然会被拒绝。
我们利用JMeter测试,每秒发送100个请求:
演示基于FallbackFactory的失败降级处理:
步骤一:需要自定义降级处理类,实现FallbackFactory<T>接口
步骤二:将自定义的降级处理类注册为Spring当中的一个Bean
步骤三:将FallbackFactory配置到FeignClient - 在FeignClient接口中使用自定义降级处理类
Closed:熔断关闭状态(默认情况下肯定都是处于Cloesd关闭状态),断路器放行所有请求,并开始统计异常比例、慢请求比例,超出比例阈值则切换到Open状态
Open:熔断打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,走fallback逻辑,快速失败 / 立刻失败,直接走降级逻辑。Open状态持续一段时间后,即配置的熔断时长结束后会进入Half-Open状态。
Half-Open:半熔断状态或半开状态,放行一次请求,根据执行结果来判断接下来的操作。
万一微服务地址泄漏了,那可能访问微服务时就不经过网关服务了。。。
授权规则的授权类型有白名单和黑名单两种方式:
资源名:就是受保护的资源,例如/order/{orderId}
流控应用:是来源者的名单,填写的是请求来源的名称:许可来源的调用者或允许调用者的名字和禁止访问的来源的调用者
获取请求来源的接口:
- /**
- * 请求来源解析器
- */
- public interface RequestOriginParser {
- /**
- * 从请求request对象中获取origin,获取方式自定义
- */
- String parseOrigin(HttpServletRequest request);
- }
默认情况下,Sentinel不管请求者从哪里来,返回值永远是default,也就是说一切请求的来源都被认为是一样的值default。
因此,我们需要自定义这个接口的实现,让不同来源的请求,返回不同的origin。
在Getway网关服务中,利用网关的过滤器添加名为getway的origin头,此时经过网关的所有请求,一定会带上这样的头。
- import com.alibaba.csp.sentinel.adapter.spring.webmvc.callback.RequestOriginParser;
- import org.springframework.stereotype.Component;
- import org.springframework.util.StringUtils;
-
- import javax.servlet.http.HttpServletRequest;
-
- @Component
- public class HeaderOriginParser implements RequestOriginParser {
- @Override
- public String parseOrigin(HttpServletRequest request) {
- // 1.获取请求头
- String origin = request.getHeader("origin");
- // 2.利用StringUtils工具类做非空判断
- if (StringUtils.isEmpty(origin)) {
- origin = "blank";
- }
- return origin;
- }
- }
默认情况下,发生限流、降级、授权拦截时,都会抛出异常到调用方,前端页面的异常结果都是flow limmiting(限流),这样不够友好,无法得知是限流还是降级还是授权拦截。
如果要自定义异常时的返回结果,需要实现BlocExceptionHandler接口 - 阻塞异常处理器:
这个方法有三个参数:
BlockException包含很多个子类,分别对应不同的场景:
FlowException 限流异常 => 限流返回的状态码一般都是429
DegradeException 降级异常
ParamFlowExcption 参数限流异常
AuthorityException 授权异常
SystemBlockException 系统负载异常
- @Component
- public class SentinelExceptionHandler implements BlockExceptionHandler {
- @Override
- public void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception {
- String msg = "未知异常";
- int status = 429;
-
- if (e instanceof FlowException) {
- msg = "请求被限流了";
- } else if (e instanceof ParamFlowException) {
- msg = "请求被热点参数限流";
- } else if (e instanceof DegradeException) {
- msg = "请求被降级了";
- } else if (e instanceof AuthorityException) {
- msg = "没有权限访问";
- status = 401;
- }
-
- response.setContentType("application/json;charset=utf-8");
- response.setStatus(status);
- response.getWriter().println("{\"msg\": " + msg + ", \"status\": " + status + "}");
- }
- }
规则是否能持久化,取决于规则管理模式,Sentinel控制台支持三种规则管理模式:
原始模式:Sentinel的默认模式,将规则保存在内存,服务重启后规则会丢失。
pull模式
push模式
推荐:实现其中的push模式,完成规则的持久化。
pull和push这两种模式都可以实现规则的持久化,只不过在实现的方式上有差异。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。