赞
踩
参考论文是23年发表在cvpr的论文,DepGraph: Towards Any Structural Pruning,是一种结构化的模型压缩算法。凭记忆写的,可能会有些小问题...
一、torch_pruning环境搭建
1. 创建conda虚拟环境
conda create -n ModelPruning python=3.9
2. 到官网下载代码解压,cd到对应文件夹里安装环境
pip install torch-pruning
3. 测试一下
- # 下载预训练模型
- wget https://github.com/VainF/Torch-Pruning/releases/download/v1.1.4/cifar10_resnet56.pth
-
- # 按提示装包
-
- # 把模型放到相应文件夹里,运行depgraph算法
- python benchmarks/main.py --mode prune --model resnet56 --batch-size 128 --restore models/trained/cifar10_resnet56.pth --dataset cifar10 --method group_sl --speed-up 2.11 --global-pruning
二、模型与数据集
仍然使用上面的conda环境
1. 下载yolov5的代码(官网),安装依赖
pip install -U -r requirements.txt
我的这条命令会报错找不到对应版本的包,通过关掉vpn解决了。
2. 下载预训练模型(yolov5s)与coco128数据集,放到yolov5的文件夹中
3. 各种命令
- # 训练
- python train.py --img 640 --batch 16 --epochs 5 --data ./data/coco128.yaml --cfg ./models/yolov5s.yaml --weights ./yolov5s.pt
-
- # 预测
- python detect.py --source inference/images/ --weights ./yolov5s.pt
-
- # 测试
- python val.py --weights yolov5s.pt --data coco128.yaml --img 640
三、使用depgraph算法压缩yolov5模型
- import argparse
- import copy
- import math
- import os
- import random
- import subprocess
- import sys
- import time
- from copy import deepcopy
- from datetime import datetime
- from pathlib import Path
- from functools import partial
-
- try:
- import comet_ml # must be imported before torch (if installed)
- except ImportError:
- comet_ml = None
-
- import numpy as np
- import torch
- import torch.distributed as dist
- import torch.nn as nn
- import yaml
- from torch.optim import lr_scheduler
- from tqdm import tqdm
-
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[0].parents[0] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
-
- import val as validate # for end-of-epoch mAP
- from models.experimental import attempt_load
- from models.yolo import Model
- from utils.autoanchor import check_anchors
- from utils.autobatch import check_train_batch_size
- from utils.callbacks import Callbacks
- from utils.dataloaders import create_dataloader
- from utils.downloads import attempt_download, is_url
- from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info,
- check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr,
- get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights,
- labels_to_image_weights, methods, one_cycle, print_args, print_mutation, strip_optimizer,
- yaml_save)
- from utils.loggers import Loggers
- from utils.loggers.comet.comet_utils import check_comet_resume
- from utils.loss import ComputeLoss
- from utils.metrics import fitness
- from utils.plots import plot_evolve
- from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer,
- smart_resume, torch_distributed_zero_first)
-
- LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
- RANK = int(os.getenv('RANK', -1))
- WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
- GIT_INFO = check_git_info()
-
-
- ## global variables ##
- nc = 1 # number of classes
- w = '' # path of pretrained model
- last = '' # path of last.pt
- best = '' # path of best.pt
- plots = True # figure
- cuda =True # if using gpu
- names = {} # class name
- is_coco = False # if val with coco dataset
- amp = True # if training/valuating model with amp
- batch_size = 64
- loggers = None # logs
- train_path = ''
- val_path = ''
- pretrained = True # if load pretained model
- imgsz = 320
- ckpt = None # the loaded model
- csd = None # checkpoint state_dict as FP32
- labels = None # torch tensor
- gs = 0 # image size
- data_dict = ''
- compute_loss = None
-
- # 运行命令
- # python pruning/MagnitudePrunner_train_after_pruning.py --weights yolov5s.pt --data data/coco128.yaml --target-prune-rate 0.1 --epochs 50
-
- def preparing(hyp, opt, device, callbacks):
- global loggers, nc, last, best, plots, cuda, names, is_coco, train_path, val_path, ckpt, data_dict, w
-
- save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
- Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
- opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
- callbacks.run('on_pretrain_routine_start')
-
- # Directories
- w = save_dir / 'weights' # weights dir
- (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
- last, best = w / 'last.pt', w / 'best.pt'
-
- # Hyperparameters
- if isinstance(hyp, str):
- with open(hyp, errors='ignore') as f:
- hyp = yaml.safe_load(f) # load hyps dict
- LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
- opt.hyp = hyp.copy() # for saving hyps to checkpoints
-
- # Save run settings
- if not evolve:
- yaml_save(save_dir / 'hyp.yaml', hyp)
- yaml_save(save_dir / 'opt.yaml', vars(opt))
-
- # Loggers
- data_dict = None
- if RANK in {-1, 0}:
- loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance
-
- # Register actions
- for k in methods(loggers):
- callbacks.register_action(k, callback=getattr(loggers, k))
-
- # Process custom dataset artifact link
- data_dict = loggers.remote_dataset
- if resume: # If resuming runs from remote artifact
- weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size
-
- # Config
- plots = not evolve and not opt.noplots # create plots
- cuda = device.type != 'cpu'
- init_seeds(opt.seed + 1 + RANK, deterministic=True)
- with torch_distributed_zero_first(LOCAL_RANK):
- data_dict = data_dict or check_dataset(data) # check if None
- train_path, val_path = data_dict['train'], data_dict['val']
- nc = 1 if single_cls else int(data_dict['nc']) # number of classes
- names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
- is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset
-
- def load_model(hyp, opt, device):
- weights, cfg, resume, freeze, single_cls = \
- opt.weights, opt.cfg, opt.resume, opt.freeze, opt.single_cls
-
- global pretrained, ckpt, csd
-
- # Model
- check_suffix(weights, '.pt') # check weights
- pretrained = weights.endswith('.pt')
- if pretrained:
- with torch_distributed_zero_first(LOCAL_RANK):
- weights = attempt_download(weights) # download if not found locally
- ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak
- model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
- exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
- csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
- csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
- model.load_state_dict(csd, strict=False) # load
- LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
- else:
- model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
-
- global amp
- amp = check_amp(model) # check AMP
-
- # Freeze
- freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze
- for k, v in model.named_parameters():
- v.requires_grad = True # train all layers
- # v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
- if any(x in k for x in freeze):
- LOGGER.info(f'freezing {k}')
- v.requires_grad = False
-
- # DP mode
- if cuda and RANK == -1 and torch.cuda.device_count() > 1:
- LOGGER.warning(
- 'WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
- 'See Multi-GPU Tutorial at https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training to get started.'
- )
- model = torch.nn.DataParallel(model)
-
- # SyncBatchNorm
- if opt.sync_bn and cuda and RANK != -1:
- model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
- LOGGER.info('Using SyncBatchNorm()')
-
- return model
-
- def load_dataset(hyp, opt, model):
- global batch_size, imgsz, labels, gs
- single_cls, workers, data, noval = opt.single_cls, opt.workers, opt.data, opt.noval
- # Image size
- gs = max(int(model.stride.max()), 32) # grid size (max stride)
- imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
-
- # Batch size
- if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
- batch_size = check_train_batch_size(model, imgsz, amp)
- loggers.on_params_update({'batch_size': batch_size})
-
-
- # Trainloader
- train_loader, dataset = create_dataloader(train_path,
- imgsz,
- batch_size // WORLD_SIZE,
- gs,
- single_cls,
- hyp=hyp,
- augment=True,
- cache=None if opt.cache == 'val' else opt.cache,
- rect=opt.rect,
- rank=LOCAL_RANK,
- workers=workers,
- image_weights=opt.image_weights,
- quad=opt.quad,
- prefix=colorstr('train: '),
- shuffle=True,
- seed=opt.seed)
- labels = np.concatenate(dataset.labels, 0)
- mlc = int(labels[:, 0].max()) # max label class
- assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
-
- # Process 0
- val_loader = None
- if RANK in {-1, 0}:
- val_loader = create_dataloader(val_path,
- imgsz,
- batch_size // WORLD_SIZE * 2,
- gs,
- single_cls,
- hyp=hyp,
- cache=None if noval else opt.cache,
- rect=True,
- rank=-1,
- workers=workers * 2,
- pad=0.5,
- prefix=colorstr('val: '))[0]
-
-
- return dataset, train_loader, val_loader
-
- def get_pruner(opt, model, device):
- import torch_pruning as tp
- example_inputs = torch.randn(1, 3, imgsz, imgsz).to(device)
-
- ignored_layers = []
- from models.yolo import Detect
- for m in model.modules():
- if isinstance(m, (Detect)):
- ignored_layers.append(m.m)
-
- opt.sparsity_learning = True
- imp = tp.importance.GroupNormImportance(p=2, normalizer='max') # normalized by the maximum score for CIFAR
- pruner_entry = partial(tp.pruner.GroupNormPruner, reg=opt.reg, global_pruning=opt.global_pruning)
-
- pruning_ratio_dict = {}
- unwrapped_parameters = []
- pruner = pruner_entry(
- model,
- example_inputs,
- importance=imp,
- iterative_steps=20,
- pruning_ratio=1.0,
- pruning_ratio_dict=pruning_ratio_dict,
- max_pruning_ratio=0.5,
- ignored_layers=ignored_layers,
- unwrapped_parameters=unwrapped_parameters,
- )
- return pruner
-
- def pruning(opt, model, device, pruner):
- import torch_pruning as tp
- model.eval()
- # print(model)
-
- example_inputs = torch.randn(1, 3, imgsz, imgsz).to(device)
- base_macs, base_nparams = tp.utils.count_ops_and_params(model, example_inputs)
-
- # progress
- current_speed_up = 1
- while current_speed_up < opt.speed_up:
- pruner.step()
- pruned_ops, _ = tp.utils.count_ops_and_params(model, example_inputs=example_inputs)
- current_speed_up = float(base_macs) / pruned_ops
- if pruner.current_step == pruner.iterative_steps:
- break
-
- pruned_macs, pruned_nparams = tp.utils.count_ops_and_params(model, example_inputs)
- # print(model)
-
- print("Before Pruning: MACs=%f G, #Params=%f G" % (base_macs / 1e9, base_nparams / 1e9))
- print("After Pruning: MACs=%f G, #Params=%f G" % (pruned_macs / 1e9, pruned_nparams / 1e9))
-
- return model
-
- def eval(model, val_loader, op, callbacks, save_dir):
- single_cls = op.single_cls
- save_dir.mkdir(parents=True, exist_ok=True)
-
- LOGGER.info("eval model...")
- validate.run(
- data_dict,
- batch_size=batch_size // WORLD_SIZE * 2,
- imgsz=imgsz,
- model=model,
- iou_thres=0.65 if is_coco else 0.60, # best pycocotools at iou 0.65
- single_cls=single_cls,
- dataloader=val_loader,
- save_dir=save_dir,
- save_json=is_coco,
- verbose=True,
- plots=plots,
- callbacks=callbacks,
- compute_loss=compute_loss,
- )
-
- from enum import Enum
- class Mode(Enum):
- FINE_TUNING = False
- SPARSE_LEARNING = True
-
- def train(hyp, opt, device,
- model, dataset, train_loader, val_loader,
- callbacks,
- mode=Mode.FINE_TUNING,
- pruner=None): # hyp is path/to/hyp.yaml or hyp dictionary
- weights, epochs, resume, save_dir, single_cls, noval, nosave, evolve = (
- opt.weights, opt.epochs, opt.resume, Path(opt.save_dir), opt.single_cls, opt.noval, opt.nosave, opt.evolve)
-
- if mode == Mode.SPARSE_LEARNING:
- epochs = opt.sl_epochs
-
- # Optimizer
- nbs = 64 # nominal batch size
- accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
- hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
- optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])
-
- # Scheduler
- if opt.cos_lr:
- lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
- else:
- lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
- scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
-
- # EMA
- ema = ModelEMA(model) if RANK in {-1, 0} else None
-
- # Resume
- best_fitness, start_epoch = 0.0, 0
-
- global ckpt, csd
- if pretrained:
- if resume:
- best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
-
- try:
- del ckpt, csd
- except NameError:
- print("ckpt, csd have been deleted!")
-
- if RANK in {-1, 0}:
- if not resume:
- if not opt.noautoanchor:
- check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # run AutoAnchor
- model.half().float() # pre-reduce anchor precision
-
- callbacks.run('on_pretrain_routine_end', labels, names)
-
- # DDP mode
- if cuda and RANK != -1:
- model = smart_DDP(model)
-
- # Model attributes
- nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
- hyp['box'] *= 3 / nl # scale to layers
- hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers
- hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
- hyp['label_smoothing'] = opt.label_smoothing
- model.nc = nc # attach number of classes to model
- model.hyp = hyp # attach hyperparameters to model
- model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
- model.names = names
-
- # Start training
- t0 = time.time()
- nb = len(train_loader) # number of batches
- nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations)
- # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
- last_opt_step = -1
- maps = np.zeros(nc) # mAP per class
- results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
- scheduler.last_epoch = start_epoch - 1 # do not move
- scaler = torch.cuda.amp.GradScaler(enabled=amp)
- stopper, stop = EarlyStopping(patience=opt.patience), False
-
- global compute_loss
- compute_loss = ComputeLoss(model) # init loss class
- callbacks.run('on_train_start')
- LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
- f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
- f"Logging results to {colorstr('bold', save_dir)}\n"
- f'Starting training for {epochs} epochs...')
-
- for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
- callbacks.run('on_train_epoch_start')
- model.train()
-
- # Update image weights (optional, single-GPU only)
- if opt.image_weights:
- cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
- iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
- dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
-
- # Update mosaic border (optional)
- # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
- # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
-
- mloss = torch.zeros(3, device=device) # mean losses
- if RANK != -1:
- train_loader.sampler.set_epoch(epoch)
- pbar = enumerate(train_loader)
- LOGGER.info(('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', 'box_loss', 'obj_loss', 'cls_loss', 'Instances', 'Size'))
- if RANK in {-1, 0}:
- pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar
- optimizer.zero_grad()
- for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
- callbacks.run('on_train_batch_start')
- ni = i + nb * epoch # number integrated batches (since train start)
- imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
-
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
- accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
- for j, x in enumerate(optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
- if 'momentum' in x:
- x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
-
- # Multi-scale
- if opt.multi_scale:
- sz = random.randrange(int(imgsz * 0.5), int(imgsz * 1.5) + gs) // gs * gs # size
- sf = sz / max(imgs.shape[2:]) # scale factor
- if sf != 1:
- ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
- imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
-
- # Forward
- with torch.cuda.amp.autocast(amp):
- pred = model(imgs) # forward
- loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
- if RANK != -1:
- loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
- if opt.quad:
- loss *= 4.
-
- # Backward
- scaler.scale(loss).backward()
-
- # sparse learning
- if mode == Mode.SPARSE_LEARNING:
- pruner.regularize(model)
-
- # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
- if ni - last_opt_step >= accumulate:
- scaler.unscale_(optimizer) # unscale gradients
- torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
- scaler.step(optimizer) # optimizer.step
- scaler.update()
- optimizer.zero_grad()
- if ema:
- ema.update(model)
- last_opt_step = ni
-
- # Log
- if RANK in {-1, 0}:
- mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
- mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
- pbar.set_description(('%11s' * 2 + '%11.4g' * 5) %
- (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
- callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths, list(mloss))
- if callbacks.stop_training:
- return
- # end batch ------------------------------------------------------------------------------------------------
-
- # Scheduler
- lr = [x['lr'] for x in optimizer.param_groups] # for loggers
- scheduler.step()
-
- if RANK in {-1, 0}:
- # mAP
- callbacks.run('on_train_epoch_end', epoch=epoch)
- ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
- final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
- if not noval or final_epoch: # Calculate mAP
- results, maps, _ = validate.run(data_dict,
- batch_size=batch_size // WORLD_SIZE * 2,
- imgsz=imgsz,
- half=amp,
- model=ema.ema,
- single_cls=single_cls,
- dataloader=val_loader,
- save_dir=save_dir,
- plots=False,
- callbacks=callbacks,
- compute_loss=compute_loss)
-
- # Update best mAP
- fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
- stop = stopper(epoch=epoch, fitness=fi) # early stop check
- if fi > best_fitness:
- best_fitness = fi
- log_vals = list(mloss) + list(results) + lr
- callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
-
- # Save model
- if (not nosave) or (final_epoch and not evolve): # if save
- ckpt = {
- 'epoch': epoch,
- 'best_fitness': best_fitness,
- 'model': deepcopy(de_parallel(model)).half(),
- 'ema': deepcopy(ema.ema).half(),
- 'updates': ema.updates,
- 'optimizer': optimizer.state_dict(),
- 'opt': vars(opt),
- 'git': GIT_INFO, # {remote, branch, commit} if a git repo
- 'date': datetime.now().isoformat()}
-
- # Save last, best and delete
- torch.save(ckpt, last)
- if best_fitness == fi:
- torch.save(ckpt, best)
- if opt.save_period > 0 and epoch % opt.save_period == 0:
- torch.save(ckpt, w / f'epoch{epoch}.pt')
- del ckpt
- callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
-
- # EarlyStopping
- if RANK != -1: # if DDP training
- broadcast_list = [stop if RANK == 0 else None]
- dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
- if RANK != 0:
- stop = broadcast_list[0]
- if stop:
- break # must break all DDP ranks
-
- # end epoch ----------------------------------------------------------------------------------------------------
-
- # end training -----------------------------------------------------------------------------------------------------
- if RANK in {-1, 0}:
- LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
- for f in last, best:
- if f.exists():
- strip_optimizer(f) # strip optimizers
- if f is best:
- LOGGER.info(f'\nValidating {f}...')
- results, _, _ = validate.run(
- data_dict,
- batch_size=batch_size // WORLD_SIZE * 2,
- imgsz=imgsz,
- model=attempt_load(f, device).half(),
- iou_thres=0.65 if is_coco else 0.60, # best pycocotools at iou 0.65
- single_cls=single_cls,
- dataloader=val_loader,
- save_dir=save_dir,
- save_json=is_coco,
- verbose=True,
- plots=plots,
- callbacks=callbacks,
- compute_loss=compute_loss) # val best model with plots
- if is_coco:
- callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
-
- callbacks.run('on_train_end', last, best, epoch, results)
-
- torch.cuda.empty_cache()
- return results
-
-
- def parse_opt(known=False):
- parser = argparse.ArgumentParser()
- parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
- parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
- parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
- parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
- parser.add_argument('--epochs', type=int, default=5, help='total training epochs')
- parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
- parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
- parser.add_argument('--rect', action='store_true', help='rectangular training')
- parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
- parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
- parser.add_argument('--noval', action='store_true', help='only validate final epoch')
- parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
- parser.add_argument('--noplots', action='store_true', help='save no plot files')
- parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
- parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
- parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
- parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
- parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
- parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
- parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
- parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
- parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
- parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
- parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
- parser.add_argument('--name', default='exp', help='save to project/name')
- parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
- parser.add_argument('--quad', action='store_true', help='quad dataloader')
- parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
- parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
- parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
- parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
- parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
- parser.add_argument('--seed', type=int, default=0, help='Global training seed')
- parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
- # Logger arguments
- parser.add_argument('--entity', default=None, help='Entity')
- parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='Upload data, "val" option')
- parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval')
- parser.add_argument('--artifact_alias', type=str, default='latest', help='Version of dataset artifact to use')
-
- ## for pruning
- parser.add_argument('--target-prune-rate', default=0.5, type=float, help='Target pruning rate')
- parser.add_argument("--speed-up", type=float, default=2)
- parser.add_argument("--global-pruning", action="store_true", default=False)
- parser.add_argument("--iterative-steps", default=20, type=int)
- parser.add_argument("--max-pruning-ratio", type=float, default=1.0)
- parser.add_argument("--soft-keeping-ratio", type=float, default=0.0)
-
- parser.add_argument("--finetune", action="store_true", default=False, help='whether finetune or not')
- # parser.add_argument("--total-epochs", type=int, default=100)
- parser.add_argument("--lr-decay-milestones", default="60,80", type=str, help="milestones for learning rate decay")
- parser.add_argument("--lr-decay-gamma", default=0.1, type=float)
- parser.add_argument("--lr", default=0.01, type=float, help="learning rate")
- parser.add_argument("--weight-decay", type=float, default=5e-4) # optimizer的参数,限制模型权重
-
- parser.add_argument("--sparse-learning", action="store_true", default=False, help='whether sparse learning or not')
- parser.add_argument("--sl-epochs", type=int, default=5, help="epochs for sparsity learning")
- parser.add_argument("--sl-lr", default=0.01, type=float, help="learning rate for sparsity learning")
- parser.add_argument("--sl-lr-decay-milestones", default="60,80", type=str, help="milestones for sparsity learning")
- parser.add_argument("--sl-restore", type=str, default=None)
- parser.add_argument("--reg", type=float, default=5e-4)
-
- return parser.parse_known_args()[0] if known else parser.parse_args()
-
-
- def main(opt, callbacks=Callbacks()):
- # Checks
- if RANK in {-1, 0}:
- print_args(vars(opt))
- check_git_status()
- check_requirements(ROOT / 'requirements.txt')
-
- # Resume (from specified or most recent last.pt)
- if opt.resume and not check_comet_resume(opt) and not opt.evolve:
- global last
- last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
- opt_yaml = last.parent.parent / 'opt.yaml' # train options yaml
- opt_data = opt.data # original dataset
- if opt_yaml.is_file():
- with open(opt_yaml, errors='ignore') as f:
- d = yaml.safe_load(f)
- else:
- d = torch.load(last, map_location='cpu')['opt']
- opt = argparse.Namespace(**d) # replace
- opt.cfg, opt.weights, opt.resume = '', str(last), True # reinstate
- if is_url(opt_data):
- opt.data = check_file(opt_data) # avoid HUB resume auth timeout
- else:
- opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
- check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks
- assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
- if opt.evolve:
- if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolve
- opt.project = str(ROOT / 'runs/evolve')
- opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
- if opt.name == 'cfg':
- opt.name = Path(opt.cfg).stem # use model.yaml as name
- opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
-
- # DDP mode
- device = select_device(opt.device, batch_size=opt.batch_size)
- if LOCAL_RANK != -1:
- msg = 'is not compatible with YOLOv5 Multi-GPU DDP training'
- assert not opt.image_weights, f'--image-weights {msg}'
- assert not opt.evolve, f'--evolve {msg}'
- assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
- assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
- assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
- torch.cuda.set_device(LOCAL_RANK)
- device = torch.device('cuda', LOCAL_RANK)
- dist.init_process_group(backend='nccl' if dist.is_nccl_available() else 'gloo')
-
- # Train
- if not opt.evolve:
- # 设置参数
- preparing(opt.hyp, opt, device, callbacks)
- # 加载预训练模型
- model = copy.deepcopy(load_model(opt.hyp, opt, device))
- # 加载数据集
- dataset, train_loader, val_loader = load_dataset(opt.hyp, opt, model)
-
- # 测试原模型
- eval(model, val_loader, opt, callbacks, save_dir=Path(opt.save_dir) / 'original_eval')
-
- ## 用DepGraph算法剪枝
- # 稀疏训练
- # model.train()
- pruner = get_pruner(opt, model, device)
- if opt.sparse_learning:
- train(opt.hyp, opt, device, model, dataset, train_loader, val_loader, callbacks, Mode.SPARSE_LEARNING, pruner)
- # 剪枝
- pruning(opt, model, device, pruner)
- # 模型微调
- if opt.finetune:
- train(opt.hyp, opt, device, model, dataset, train_loader, val_loader, callbacks)
-
- # 测试新模型
- # eval(model, val_loader, opt, callbacks, save_dir=Path(opt.save_dir) / 'pruned_eval')
-
- # Evolve hyperparameters (optional)
- else:
- # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
- meta = {
- 'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
- 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
- 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
- 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
- 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
- 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
- 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
- 'box': (1, 0.02, 0.2), # box loss gain
- 'cls': (1, 0.2, 4.0), # cls loss gain
- 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
- 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
- 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
- 'iou_t': (0, 0.1, 0.7), # IoU training threshold
- 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
- 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
- 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
- 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
- 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
- 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
- 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
- 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
- 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
- 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
- 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
- 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
- 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
- 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
- 'mixup': (1, 0.0, 1.0), # image mixup (probability)
- 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
-
- with open(opt.hyp, errors='ignore') as f:
- hyp = yaml.safe_load(f) # load hyps dict
- if 'anchors' not in hyp: # anchors commented in hyp.yaml
- hyp['anchors'] = 3
- if opt.noautoanchor:
- del hyp['anchors'], meta['anchors']
- opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
- # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
- evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
- if opt.bucket:
- # download evolve.csv if exists
- subprocess.run([
- 'gsutil',
- 'cp',
- f'gs://{opt.bucket}/evolve.csv',
- str(evolve_csv), ])
-
- for _ in range(opt.evolve): # generations to evolve
- if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
- # Select parent(s)
- parent = 'single' # parent selection method: 'single' or 'weighted'
- x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
- n = min(5, len(x)) # number of previous results to consider
- x = x[np.argsort(-fitness(x))][:n] # top n mutations
- w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
- if parent == 'single' or len(x) == 1:
- # x = x[random.randint(0, n - 1)] # random selection
- x = x[random.choices(range(n), weights=w)[0]] # weighted selection
- elif parent == 'weighted':
- x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
-
- # Mutate
- mp, s = 0.8, 0.2 # mutation probability, sigma
- npr = np.random
- npr.seed(int(time.time()))
- g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1
- ng = len(meta)
- v = np.ones(ng)
- while all(v == 1): # mutate until a change occurs (prevent duplicates)
- v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
- for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
- hyp[k] = float(x[i + 7] * v[i]) # mutate
-
- # Constrain to limits
- for k, v in meta.items():
- hyp[k] = max(hyp[k], v[1]) # lower limit
- hyp[k] = min(hyp[k], v[2]) # upper limit
- hyp[k] = round(hyp[k], 5) # significant digits
-
- # Train mutation
- results = train(hyp.copy(), opt, device, callbacks)
- callbacks = Callbacks()
- # Write mutation results
- keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss',
- 'val/obj_loss', 'val/cls_loss')
- print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket)
-
- # Plot results
- plot_evolve(evolve_csv)
- LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
- f"Results saved to {colorstr('bold', save_dir)}\n"
- f'Usage example: $ python train.py --hyp {evolve_yaml}')
-
-
- def run(**kwargs):
- # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
- opt = parse_opt(True)
- for k, v in kwargs.items():
- setattr(opt, k, v)
- main(opt)
- return opt
-
-
- if __name__ == '__main__':
- opt = parse_opt()
- main(opt)

目前没有区别Sparse Learning和Fine-tuing的optimizer和scheduler,需要的话,可以增加if语句为两种情况创建不同的优化器。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。