赞
踩
– 读取文件数据的方法
Hive在0.8之后增加的索引为位图索引,而传统SQL有复杂的索引
• Hive很容易扩展自己的存储能力和计算能力,这个是继承hadoop的,而关系数据库在这个方面要比数据库差很多。
语句转换:解释器、编译器、优化器、执行器。
1. 查询语言。由于 SQL 被广泛的应用在数据仓库中,因此,专门针对 Hive 的特性设计了类 SQL 的查询语言 HQL。熟悉 SQL 开发的开发者可以很方便的使用 Hive 进行开发。
2. 数据存储位置。Hive 是建立在Hadoop 之上的,所有 Hive 的数据都是存储在HDFS 中的。而数据库则可以将数据保存在块设备或者本地文件系统中。
3. 数据格式。Hive 中没有定义专门的数据格式,数据格式可以由用户指定,用户定义数据格式需要指定三个属性:列分隔符(通常为空格、”\t”、”\x001″)、行分隔符(”\n”)以及读取文件数据的方法(Hive 中默认有三个文件格式 TextFile,SequenceFile 以及 RCFile)。由于在加载数据的过程中,不需要从用户数据格式到 Hive 定义的数据格式的转换,因此,Hive 在加载的过程中不会对数据本身进行任何修改,而只是将数据内容复制或者移动到相应的 HDFS 目录中。而在数据库中,不同的数据库有不同的存储引擎,定义了自己的数据格式。所有数据都会按照一定的组织存储,因此,数据库加载数据的过程会比较耗时。
4. 数据更新。由于 Hive 是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。因此,Hive 中不支持对数据的改写和添加,所有的数据都是在加载的时候中确定好的。而数据库中的数据通常是需要经常进行修改的,因此可以使用 INSERT INTO ... VALUES 添加数据,使用 UPDATE... SET 修改数据。
5. 索引。之前已经说过,Hive 在加载数据的过程中不会对数据进行任何处理,甚至不会对数据进行扫描,因此也没有对数据中的某些 Key 建立索引。Hive 要访问数据中满足条件的特定值时,需要暴力扫描整个数据,因此访问延迟较高。由于 MapReduce 的引入, Hive 可以并行访问数据,因此即使没有索引,对于大数据量的访问,Hive 仍然可以体现出优势。数据库中,通常会针对一个或者几个列建立索引,因此对于少量的特定条件的数据的访问,数据库可以有很高的效率,较低的延迟。由于数据的访问延迟较高,决定了 Hive 不适合在线数据查询。
6. 执行。Hive 中大多数查询的执行是通过 Hadoop 提供的 MapReduce 来实现的,而数据库通常有自己的执行引擎。
7. 执行延迟。之前提到,Hive 在查询数据的时候,由于没有索引,需要扫描整个表,因此延迟较高。另外一个导致 Hive 执行延迟高的因素是 MapReduce 框架。由于 MapReduce 本身具有较高的延迟,因此在利用 MapReduce 执行 Hive 查询时,也会有较高的延迟。相对的,数据库的执行延迟较低。当然,这个低是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时候,Hive 的并行计算显然能体现出优势。
8. 可扩展性。由于 Hive 是建立在 Hadoop 之上的,因此 Hive 的可扩展性是和 Hadoop 的可扩展性是一致的(世界上最大的 Hadoop 集群在 Yahoo!,2009年的规模在4000 台节点左右)。而数据库由于 ACID 语义的严格限制,扩展行非常有限。目前最先进的并行数据库 Oracle 在理论上的扩展能力也只有 100 台左右。
9. 数据规模。由于 Hive 建立在集群上并可以利用 MapReduce 进行并行计算,因此可以支持很大规模的数据;对应的,数据库可以支持的数据规模较小。
用户接口主要由三个:CLI、JDBC/ODBC和WebGUI。其中,CLI为shell命令行;JDBC/ODBC是Hive的JAVA实现,与传统数据库JDBC类似;WebGUI是通过浏览器访问Hive。
元数据存储:Hive 将元数据存储在数据库中。Hive中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。
解释器、编译器、优化器完成 HQL 查询语句从词法分析、语法分析、编译、优化以及查询计划的生成。生成的查询计划存储在HDFS 中,并在随后有 MapReduce 调用执行。
简化版
详细版
– bucket:在hdfs中表现为同一个表目录下根据hash散列之后的多个文件
– 在删除表的时候,Hive将会把属于表的元数据和数据全部删掉;而删除外部表的时候,Hive仅仅删除外部表的元数据,数据是不会删除的!
• partition是辅助查询,缩小查询范围,加快数据的检索速度和对数据按照一定的规格和条件进行管理。
– y必须是table总bucket数的倍数或者因子。hive根据y的大小,决定抽样的比例。例如,table总共分了64份,当y=32时,抽取(64/32=)2个bucket的数据,当y=128时,抽取(64/128=)1/2个bucket的数据。x表示从哪个bucket开始抽取。例如,table总bucket数为32,tablesample(bucket 3 out of 16),表示总共抽取(32/16=)2个bucket的数据,分别为第3个bucket和第(3+16=)19个bucket的数据。
• TIMESTAMP(Hive 0.8.0以上才可用)
– 复合类型
• Arrays:ARRAY<data_type>
• Maps:MAP<primitive_type, data_type>
• Structs:STRUCT<col_name: data_type[COMMENT col_comment],……>
• Union:UNIONTYPE<data_type, data_type,……>
- INSERT OVERWRITE TABLE pv_users
- SELECT pv.pageid, u.age
- FROM page_view pv
- JOIN user u
- ON (pv.userid = u.userid);
- SELECT pageid, age, count(1)
- FROM pv_users
- GROUP BY pageid, age;
– 如何合并小文件,减少map数?
– 如何适当的增加map数?
– Map端聚合 hive.map.aggr=true 。 Mr中的Combiners.
– 没有group by
– 笛卡尔积
– 先做union all再做join或group by等操作可以有效减少MR过程,尽管是多个Select,最终只有一个mr
– from ods_log where dt=20170301 group by dt
• 一个MR job
• 生成多个MR job
• 按照JOIN顺序中的最后一个表应该尽量是大表,因为JOIN前一阶段生成的数据会存在于Reducer的buffer中,通过stream最后面的表,直接从Reducer的buffer中读取已经缓冲的中间结果数据(这个中间结果数据可能是JOIN顺序中,前面表连接的结果的Key,数据量相对较小,内存开销就小),这样,与后面的大表进行连接时,只需要从buffer中读取缓存的Key,与大表中的指定Key进行连接,速度会更快,也可能避免内存缓冲区溢出。
• 左连接时,左表中出现的JOIN字段都保留,右表没有连接上的都为空。
• 执行顺序是,首先完成2表JOIN,然后再通过WHERE条件进行过滤,这样在JOIN过程中可能会输出大量结果,再对这些结果进行过滤,比较耗时。可以进行优化,将WHERE条件放在ON后,在JOIN的过程中,就对不满足条件的记录进行了预先过滤。
同步执行hive的多个阶段,hive在执行过程,将一个查询转化成一个或者多个阶段。某个特定的job可能包含众多的阶段,而这些阶段可能并非完全相互依赖的,也就是说可以并行执行的,这样可能使得整个job的执行时间缩短。hive执行开启:set hive.exec.parallel=true
• hive.groupby.skewindata=true
• Small_table join big_table
• 原因
• 日志中有一部分的userid是空或者是0的情况,导致在用user_id进行hash分桶的时候,会将日志中userid为0或者空的数据分到一起,导致了过大的斜率。
• 思路
• 把空值的key变成一个字符串加上随机数,把倾斜的数据分到不同的reduce上,由于null值关联不上,处理后并不影响最终结果。
• 方法
• on case when (x.uid = '-' or x.uid = '0‘ or x.uid is null) then concat('dp_hive_search',rand()) else x.uid
end = f.user_id;
• on t11.user_id=t12.user_id
• where user_id is not null and user_id <> ''
• group by day
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name
[(col_name data_type[COMMENT col_comment], ...)]
[COMMENT table_comment]
[PARTITIONED BY (col_namedata_type [COMMENT col_comment], ...)]
[CLUSTERED BY (col_name,col_name, ...)
[SORTED BY (col_name[ASC|DESC], ...)] INTO num_buckets BUCKETS]
[ROW FORMAT row_format]
[STORED AS file_format]
[LOCATION hdfs_path]
说明:
1、CREATETABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXISTS 选项来忽略这个异常。
2、EXTERNAL关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION),Hive 创建内部表时,会将数据移动到数据仓库指向的路径;若创建外部表,仅记录数据所在的路径,不对数据的位置做任何改变。在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。
3、 LIKE 允许用户复制现有的表结构,但是不复制数据。
4、 ROW FORMAT DELIMITED [FIELDS TERMINATED BY char][COLLECTION ITEMS TERMINATED BY char]
[MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]
| SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value,property_name=property_value, ...)]
ROW FORMAT DELIMITED 用来设置创建的表在加载数据的时候,支持的列分隔符;用户在建表的时候可以自定义SerDe 或者使用自带的 SerDe。如果没有指定 ROW FORMAT 或者 ROW FORMAT DELIMITED,将会使用自带的 SerDe。在建表的时候,用户还需要为表指定列,用户在指定表的列的同时也会指定自定义的SerDe,Hive通过 SerDe 确定表的具体的列的数据。
5、 STORED AS
SEQUENCEFILE|TEXTFILE|RCFILE
如果文件数据是纯文本,可以使用 STORED AS TEXTFILE。如果数据需要压缩,使用 STORED ASSEQUENCEFILE。
6、CLUSTERED BY
对于每一个表(table)或者分区, Hive可以进一步组织成桶,也就是说桶是更为细粒度的数据范围划分。Hive也是 针对某一列进行桶的组织。Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中。
把表(或者分区)组织成桶(Bucket)有两个理由:
(1)获得更高的查询处理效率。桶为表加上了额外的结构,Hive 在处理有些查询时能利用这个结构。具体而言,连接两个在(包含连接列的)相同列上划分了桶的表,可以使用 Map 端连接 (Map-side join)高效的实现。比如JOIN操作。对于JOIN操作两个表有一个相同的列,如果对这两个表都进行了桶操作。那么将保存相同列值的桶进行JOIN操作就可以,可以大大较少JOIN的数据量。
(2)使取样(sampling)更高效。在处理大规模数据集时,在开发和修改查询的阶段,如果能在数据集的一小部分数据上试运行查询,会带来很多方便。
1、 创建内部表mytable。
2、 创建外部表pageview。
3、 创建分区表invites。
create table student_p(Sno int,Sname string,Sex string,Sage int,Sdept string) partitioned by(part string) row format delimited fields terminated by ','stored as textfile; |
4、 创建带桶的表student。
ALTER TABLE table_name DROP partition_spec, partition_spec,...
具体实例
alter table student_p add partition(part='a') partition(part='b'); |
具体实例
具体实例
desc formatted table_name;
LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO
TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]
说明:
1、 Load 操作只是单纯的复制/移动操作,将数据文件移动到 Hive 表对应的位置。
2、 filepath:
相对路径,例如:project/data1
绝对路径,例如:/user/hive/project/data1
包含模式的完整 URI,列如:
hdfs://namenode:9000/user/hive/project/data1
3、 LOCAL关键字
如果指定了 LOCAL,那么:
load 命令会去查找本地文件系统中的filepath。如果发现是相对路径,则路径会被解释为相对于当前用户的当前路径。
load 命令会将 filepath中的文件复制到目标文件系统中。目标文件系统由表的位置属性决定。被复制的数据文件移动到表的数据对应的位置。
如果没有指定 LOCAL 关键字,如果 filepath 指向的是一个完整的 URI,hive 会直接使用这个 URI。否则:如果没有指定 schema 或者 authority,Hive 会使用在 hadoop 配置文件中定义的 schema 和 authority,fs.default.name 指定了 Namenode 的 URI。
如果路径不是绝对的,Hive 相对于/user/进行解释。
Hive 会将 filepath 中指定的文件内容移动到 table (或者 partition)所指定的路径中。4、 OVERWRITE 关键字
如果使用了OVERWRITE 关键字,则目标表(或者分区)中的内容会被删除,然后再将 filepath 指向的文件/目录中的内容添加到表/分区中。
如果目标表(分区)已经有一个文件,并且文件名和 filepath 中的文件名冲突,那么现有的文件会被新文件所替代。
具体实例
1、 加载相对路径数据。
2、 加载绝对路径数据。
3、 加载包含模式数据。
4、 OVERWRITE关键字使用。
语法结构
INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1,partcol2=val2 ...)] select_statement1 FROM from_statement
Multiple inserts:
FROM from_statement
INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1,partcol2=val2 ...)] select_statement1
[INSERT OVERWRITE TABLE tablename2 [PARTITION ...]select_statement2] ...
Dynamic partition inserts:
INSERT OVERWRITE TABLE tablename PARTITION (partcol1[=val1],partcol2[=val2] ...) select_statement FROM from_statement
具体实例
1、基本模式插入。
2、多插入模式。
3、自动分区模式。
导出表数据
语法结构
INSERT OVERWRITE [LOCAL] DIRECTORY directory1 SELECT ... FROM ...
multiple inserts:
FROM from_statement
INSERT OVERWRITE [LOCAL] DIRECTORY directory1 select_statement1
[INSERT OVERWRITE [LOCAL] DIRECTORY directory2 select_statement2]...
具体实例
1、导出文件到本地。
说明:
数据写入到文件系统时进行文本序列化,且每列用^A来区分,\n为换行符。用more命令查看时不容易看出分割符,可以使用: sed-e 's/\x01/|/g' filename[dht1] 来查看。
2、导出数据到HDFS。
基本的Select操作
语法结构
SELECT [ALL | DISTINCT] select_expr, select_expr, ...
FROM table_reference
[WHERE where_condition]
[GROUP BY col_list [HAVING condition]]
[CLUSTER BY col_list
|[DISTRIBUTE BY col_list] [SORT BY| ORDER BY col_list]
]
[LIMIT number]
注:1、order by 会对输入做全局排序,因此只有一个reducer,会导致当输入规模较大时,需要较长的计算时间。
2、sort by不是全局排序,其在数据进入reducer前完成排序。因此,如果用sort by进行排序,并且设置mapred.reduce.tasks>1,则sort by只保证每个reducer的输出有序,不保证全局有序。
3、distribute by(字段)根据指定的字段将数据分到不同的reducer,且分发算法是hash散列。
4、(Cluster by字段) 除了具有Distribute by的功能外,还会对该字段进行排序。
因此,如果分桶和sort字段是同一个时,此时,cluster by = distribute by + sort by
分桶表的作用:最大的作用是用来提高join操作的效率;
(思考这个问题:
select a.id,a.name,b.addr from a join b ona.id = b.id;
如果a表和b表已经是分桶表,而且分桶的字段是id字段
做这个join操作时,还需要全表做笛卡尔积吗?)
具体实例
1、获取年龄大的3个学生。
2、查询学生信息按年龄,降序排序。
3、按学生名称汇总学生年龄。
写 join 查询时,需要注意几个关键点:
例如:
SELECT a.* FROMa JOIN b ON (a.id = b.id)
SELECT a.* FROM a JOIN b
ON (a.id = b.id AND a.department =b.department)
是正确的,然而:
SELECT a.* FROM a JOIN b ON (a.id>b.id)
是错误的。
如果join中多个表的join key 是同一个,则 join 会被转化为单个map/reduce 任务,例如:
SELECT a.val,b.val, c.val FROM a JOIN b被转化为单个 map/reduce 任务,因为 join 中只使用了 b.key1 作为 join key。
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key =b.key1)而这一 join 被转化为2 个 map/reduce 任务。因为 b.key1 用于第一次 join 条件,而 b.key2 用于第二次 join。
这里用了 2 次map/reduce 任务。第一次缓存 a 表,用 b 表序列化;第二次缓存第一次 map/reduce 任务的结果,然后用 c 表序列化。
先 join a 表到 b 表,丢弃掉所有 join key 中不匹配的记录,然后用这一中间结果和 c 表做 join。这一表述有一个不太明显的问题,就是当一个 key 在 a 表和 c 表都存在,但是 b 表中不存在的时候:整个记录在第一次 join,即 a JOIN b 的时候都被丢掉了(包括a.val1,a.val2和a.key),然后我们再和c 表 join 的时候,如果 c.key 与 a.key 或 b.key 相等,就会得到这样的结果:NULL, NULL, NULL, c.val
具体实例
1、 获取已经分配班级的学生姓名。
2、 获取尚未分配班级的学生姓名。
1、运行一个查询。
2、运行一个文件。
3、运行参数文件。
开发Hive应用时,不可避免地需要设定Hive的参数。设定Hive的参数可以调优HQL代码的执行效率,或帮助定位问题。然而实践中经常遇到的一个问题是,为什么设定的参数没有起作用?这通常是错误的设定方式导致的。
对于一般参数,有以下三种设定方式:
l 配置文件
l 命令行参数
l 参数声明
l 用户自定义配置文件:$HIVE_CONF_DIR/hive-site.xml
l 默认配置文件:$HIVE_CONF_DIR/hive-default.xml
用户自定义配置会覆盖默认配置。
另外,Hive也会读入Hadoop的配置,因为Hive是作为Hadoop的客户端启动的,Hive的配置会覆盖Hadoop的配置。
配置文件的设定对本机启动的所有Hive进程都有效。
启动Hive(客户端或Server方式)时,可以在命令行添加-hiveconf param=value来设定参数,例如:
bin/hive-hiveconf hive.root.logger=INFO,console
这一设定对本次启动的Session(对于Server方式启动,则是所有请求的Sessions)有效。
可以在HQL中使用SET关键字设定参数,例如:
setmapred.reduce.tasks=100;
这一设定的作用域也是session级的。
上述三种设定方式的优先级依次递增。即参数声明覆盖命令行参数,命令行参数覆盖配置文件设定。注意某些系统级的参数,例如log4j相关的设定,必须用前两种方式设定,因为那些参数的读取在Session建立以前已经完成了。
• 准备数据
• 设计schema,建库,建表
• 导入
• 执行命令:select a.*, b.* from w_a a join w_b b on a.usrid=b.usrid;
– evaluate函数支持重载。
• 对比本地的方式:LOAD DATA LOCAL INPATH
insert into table test1 partition(c) select * from test2;
• create table test2 as select * from test1;
• insert overwrite local directory '/home/badou/hive_test/1.txt' select usrid, sex from w_a;
• 执行命令(例子):insert overwrite directory '/hive_output' select * from w_b;
• partition是Hive提供的一种机制:用户通过指定一个或多个partitionkey,决定数据存放方式,进而优化数据的查询,一个表可以指定多个partition key,每个partition在hive中以文件夹的形式存在。
• transform功能缺点是效率底了点
• 创建Hbase表:
– create 'classes','user'
• 加入数据:
– put 'classes','001','user:name','jack'
– put 'classes','001','user:age','20'
– put 'classes','002','user:name','liza'
– put 'classes','002','user:age','18'
• 创建Hive表并验证:
– create external table classes(id int, name string, age int)
– STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
– WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,user:name,user:age")
– TBLPROPERTIES("hbase.table.name" = "classes");
• 再添加数据到Hbase:
– put 'classes','003','user:age','1820183291839132'
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。