赞
踩
Spring AI 是一个面向 AI 工程的应用框架,其目标是将 Spring 生态系统的可移植性和模块化设计等设计原则应用到 AI 领域,并推动将 POJO 作为应用的构建块应用于 AI 领域。
简单地说,就是不再需要我们再去封装各种各样的类或者方法,直接用spring框架内置的方法,和大模型进行通信
官网地址https://spring.io/projects/spring-ai
目前只出了一个版本1.0.0-M1
server url里面如果是阿里云的链接,给换掉,因为阿里云的构建springboot里面选不了AI模块
jdk一定要选17
引入springweb和openAI两个依赖模块就可以
这里面你要去百度上找,或者自己去买openai的api-key,贴在api-key后面就可以,
base-url可以通过代理方式去调用,后面会讲到。
spring:
application:
name: springAI
ai:
openai:
api-key:
base-url: https://api.chatanywhere.tech #国内中转访问
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>3.3.0</version> <relativePath/> <!-- lookup parent from repository --> </parent> <groupId>com.kdx</groupId> <artifactId>springAI</artifactId> <version>0.0.1-SNAPSHOT</version> <name>springAI</name> <description>Demo project for Spring Boot</description> <properties> <java.version>17</java.version> <spring-ai.version>1.0.0-M1</spring-ai.version> </properties> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-openai-spring-boot-starter</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> <scope>test</scope> </dependency> </dependencies> <dependencyManagement> <dependencies> <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-bom</artifactId> <version>${spring-ai.version}</version> <type>pom</type> <scope>import</scope> </dependency> </dependencies> </dependencyManagement> <build> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <version>3.8.1</version> <configuration> <compilerVersion>17</compilerVersion> <source>16</source> <target>16</target> <encoding>UTF-8</encoding> <!-- maven 3.6.2及之后加上编译参数,可以让我们在运行期获取方法参数名称。 --> <parameters>true</parameters> <skip>true</skip> </configuration> </plugin> </plugins> </build> <repositories> <repository> <id>spring-milestones</id> <name>Spring Milestones</name> <url>https://repo.spring.io/milestone</url> <snapshots> <enabled>false</enabled> </snapshots> </repository> </repositories> </project>
新建Controller类,通过接口调用测试
@Autowired private ChatClient chatClient; //交流 @RequestMapping("/chat") public String generation(@RequestParam(value = "message", defaultValue = "讲个笑话") String message) { //prompt:提示词 return this.chatClient.prompt() //用户信息 .user(message) //请求大模型 .call() //返回文本 .content(); }
启动项目访问接口测试
流式响应的意思就是,调用接口一次响应太多文字给浏览器需要等很久,使用流式响应真正的像GPT
@Autowired
private ChatClient chatClient;
//流式响应
@RequestMapping(value = "/stream", produces = "text/html;charset=UTF-8")
public Flux<String> stream(@RequestParam(value = "message", defaultValue = "讲个笑话") String message) {
Flux<String> output = chatClient.prompt()
.user(message)
//流式调用
.stream()
.content();
return output;
}
启动项目访问接口测试
chatModel API比ChatClient 更灵活,但是底层还是用的ChatClient ,可以去参考一下chatModel的API,可以设置很多参数,因为下面设置的是gpt-4,api-key必须要和版本对应
@Autowired(required = false)
private ChatModel chatModel;
//chatModel api
@RequestMapping(value = "/ChatResponse", produces = "text/html;charset=UTF-8")
public String ChatResponse(@RequestParam(value = "message") String message) {
ChatResponse response = chatModel.call(new Prompt(
message,
OpenAiChatOptions.builder()
//选择gpt版本
.withModel("gpt-4-32k")
.withTemperature(0.4f)
.build()
));
return response.getResult().getOutput().getContent();
}
它也是只有特定的模型才能使用,需要对应的api-key
@Autowired(required = false) private OpenAiImageModel openaiImageModel; //文生图 @RequestMapping(value = "/openaiImageModel", produces = "text/html;charset=UTF-8") public String openaiImageModel(@RequestParam(value = "message") String message) { ImageResponse response = openaiImageModel.call( new ImagePrompt(message, OpenAiImageOptions.builder() //图片质量 .withQuality("hd") //生成几张 .withN(1) //尺寸 .withHeight(1024) .withWidth(1024).build()) ); return response.getResult().getOutput().getUrl(); }
它也是只有特定的模型才能使用,需要对应的api-key
//文生语音 @RequestMapping(value = "/writeByte", produces = "text/html;charset=UTF-8") public String writeByte(@RequestParam(value = "message") String message) { OpenAiAudioSpeechOptions speechOptions = OpenAiAudioSpeechOptions.builder() .withModel(OpenAiAudioApi.TtsModel.TTS_1.value) .withVoice(OpenAiAudioApi.SpeechRequest.Voice.ALLOY) .withResponseFormat(OpenAiAudioApi.SpeechRequest.AudioResponseFormat.MP3) .withSpeed(1.0f) .build(); SpeechPrompt speechPrompt = new SpeechPrompt(message, speechOptions); SpeechResponse response = openAiAudioSpeechModel.call(speechPrompt); byte[] body = response.getResult().getOutput(); try { writeByte(body,"D:\\Project"); } catch (Exception e) { System.out.println(e); } return "ok"; } public static void writeByte(byte[] audioBytes, String outputFilePath) throws IOException { FileOutputStream fileOutputStream = new FileOutputStream(outputFilePath + "111.mp3"); fileOutputStream.write(audioBytes); fileOutputStream.close(); }
意思就是在调用聊天模型的时候,预先给他设定好一个角色
比如调用聊天接口,他是怎么知道他是java开发工程师的呢?就是通过预先定义角色
新建一个AIConfig 配置类,通过一段文字在springboot启动时,预先给他定义他的角色
@Configuration
public class AIConfig {
//角色预设
@Bean
ChatClient chatClient(ChatClient.Builder builder) {
return builder.defaultSystem("你现在不是chatGPT了,我希望你以一个java工程师的身份来和我对话,你是一个在卡迪熊公司工作的java开发工程师,你叫小鹏!")
.build();
}
}
目的是可以让其他的应用程序结合GPT使用,可以更精准的返回信息,下面的apply方法就可以调用别的程序,收集信息。
@Bean
@Description("有多少人")
LocationNameFunction LocationNameFunction() {
return new LocationNameFunction();
}
package com.kdx.springai.functions; import java.util.Objects; import java.util.function.Function; public class LocationNameFunction implements Function<LocationNameFunction.Request, LocationNameFunction.Response> { @Override public Response apply(Request request) { if (Objects.isNull(request.location) || Objects.isNull(request.name)) { return new Response("缺少参数"); } return new Response("有10个人"); } //接收提取关键信息 public record Request( String name, String location) { @Override public String name() { return name; } @Override public String location() { return location; } } //最终响应给gpt public record Response(String message) { } }
//functionCall
@RequestMapping(value = "/functionCall", produces = "text/html;charset=UTF-8")
public String functionCall(@RequestParam(value = "message") String message) {
OpenAiChatOptions aiChatOptions = OpenAiChatOptions.builder()
//设置实现了function接口的bean名称
.withFunction("LocationNameFunction")
.withModel(OpenAiApi.ChatModel.GPT_3_5_TURBO)
.build();
ChatResponse response = chatModel.call(new Prompt(message, aiChatOptions));
return response.getResult().getOutput().getContent();
}
现在是通过访问国内中转代理的方式,访问GPT的接口,但是怎么直接访问他的接口呢?
可以通过在启动类中加入代理信息。
public static void main(String[] args) {
System.setProperty("proxyType", "4"); //类型
System.setProperty("proxyPort", "7890"); //端口
System.setProperty("proxyHost", "127.0.0.1"); //ip
System.setProperty("proxySet", "true");
SpringApplication.run(SpringAiApplication.class, args);
}
这个时候yaml文件的url就可以配置https://api.chatanywhere.cn,直接访问了
------------------------------------------------------需要源码,可以留言------------------------------------------------------
赞
踩
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。