当前位置:   article > 正文

卷积神经网络(CNN)_cnn是谁提出来的

cnn是谁提出来的

Fukushima在感受野概念的基础之上提出了神经认知机的概念,可以看作是卷积神经网络的第一个实现网络
卷积神经网络(Convolutional Neural Networks, CNN)是多层感知机(MLP)的变种
感受野:视觉皮层的细胞存在一个复杂的构造。这些细胞对视觉输入空间的子区域非常敏感,我们称之为感受野
CNN由纽约大学的Yann LeCun于1998年提出。CNN本质上是一个多层感知机,其成功的原因关键在于它所采用的局部连接和共享权值的方式,一方面减少了的权值的数量使得网络易于优化,另一方面降低了过拟合的风险。CNN是神经网络中的一种,它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。该优点在网络的输入是多维图像时表现的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程。在二维图像处理上有众多优势,如网络能自行抽取图像特征包括颜色、纹理、形状及图像的拓扑结构;在处理二维图像问题上,特别是识别位移、缩放及其它形式扭曲不变性的应用上具有良好的鲁棒性和运算效率等。

CNN是一个前馈式神经网络,能从一个二维图像中提取其拓扑结构,采用反向传播算法来优化网络结构,求解网络中的未知参数。

在CNN中,图像中的小块区域(也叫做“局部感知区域”)被当做层次结构中的底层的输入数据,信息通过前向传播经过网络中的各个层,在每一层中都由过滤器构成,以便能够获得观测数据的一些显著特征。因为局部感知区域能够获得一些基础的特征,比如图像中的边界和角落等,这种方法能够提供一定程度对位移、拉伸和旋转的相对不变性。
CNN中层次之间的紧密联系和空间信息使得其特别适用于图像的处理和理解,并且能够自动的从图像抽取出丰富的相关特性。
CNN受视觉神经机制的启发而设计,是为识别二维或三维信号而设计的一个多层感知器,这种网络结构对平移、缩放、倾斜等变形具有高度不变性
CNN的特征提取层参数是通过训练数据学习得到的,所以其避免了人工特征提取,而是从训练数据中进行学习;其次同一特征图的神经元共享权值,减少了网络参数,这也是卷积网络相对于全连接网络的一大优势。共享局部权值这一特殊结构更接近于真实的生物神经网络使CNN在图像处理、语音识别领域有着独特的优越性,另一方面权值共享同时降低了网络的复杂性,且多维输入信号(语音、图像)可以直接输入网络的特点避免了特征提取和分类过程中数据重排的过程。

CNN是一种特殊的深层的神经网络模型,它的特殊性体现在两个方面,一方面它的神经元的连接是非全连接的,另一方面同一层中某些神经元之间的连接的权重是共享的(即相同的)。它的非全连接和权值共享的网络结构使之更类似于生物神经网络,降低了网络模型的复杂度(对于很难学习的深层结构来说,这是非常重要的),减少了权值的数量。

权重共享:在卷积神经网络中,卷积层的每一个卷积滤波器重复的作用于整个感受野中,对输入图像进行卷积,卷积结果构成了输入图像的特征图,提取出图像的局部特征。每一个卷积滤波器共享相同的参数,包括相同的权重矩阵和偏置项。共享权重的好处是在对图像进行特征提取时不用考虑局部特征的位置。而且权重共享提供了一种有效的方式,使要学习的卷积神经网络模型参数数量大大降低。

卷积神经网络中,输入就是一幅幅的图像,权值W就是卷积模板,一般是卷积层和下采样层交替,最后是全连接的神经网络。

卷积核往往代表一个特征,比如某个卷积核代表一段弧,那么把这个卷积核在整个图片上滚一下,卷积值较大的区域就很有可能是一段弧。注意卷积核其实就是权重,我们并不需要单独去计算一个卷积,而是一个固定大小的权重矩阵去图像上匹配时,这个操作与卷积类似,因此我们称为卷积神经网络,实际上,BP也可以看作一种特殊的卷积神经网络,只是这个卷积核就是某层的所有权重,即感知区域是整个图像。权重共享策略减少了需要训练的参数,使得训练出来的模型的泛化能力更强。

CNN一般采用卷积层与采样层交替设置,即一层卷积层接一层采样层,采样层后接一层卷积…这样卷积层提取出特征,再进行组合形成更抽象的特征,最后形成对图片对象的描述特征,CNN后面还可以跟全连接层,全连接层跟BP一样。

卷积神经网络结构包括:卷积层,降采样层,全链接层。每一层有多个特征图,每个特征图通过一种卷积滤波器提取输入的一种特征,每个特征图有多个神经元。

卷积层:使用卷积层的原因是卷积运算的一个重要特点是,通过卷积运算,可以使原信号特征增强,并且降低噪音。
降采样层:使用降采样的原因是,根据图像局部相关性的原理,对图像进行降采样可以减少计算量,同时保持图像旋转不变性。
全连接层:采用softmax全连接,得到的激活值即卷积神经网络提取到的图片特征。

一般情况下,CNN的结构形式是:输入层–> Conv层 --> Pooling层 --> (重复Conv、Pooling层) … --> FC(Full-connected)层 --> 输出结果。通常输入层大小一般为2的整数倍,如32,64,96,224,384等。通常卷积层使用较小的filter,如33,最大也就55。Pooling层用于对卷积结果进行降低维度,例如选择22的区域对卷积层进行降低维度,则选择22区域的最大值作为输出,这样卷积层的维度就降为之前一半。

https://blog.csdn.net/flowrush/article/details/87931130?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-8.edu_weight&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-8.edu_weight

CNN 用卷积层和池化层实现了图片特征提取方法

所以反向传播,就是对比预测值和真实值,继而返回去修改网络参数的过程,一开始我们随机初始化卷积核的参数,然后以误差为指导通过反向传播算法,自适应地调整卷积核的值,从而最小化模型预测值和真实值之间的误差。

对于图像中某个我们想提取特征的部分,我们可以自己设计卷积核,该卷积核可以提取与其相匹配的图像中的特征。这个卷积核在图像中一次扫描,进行卷积,每到一个位置,就与该部分图像进行卷积,得到一个特征值。特征值越接近1,表示该部分图像与该卷积核想提取的特征越接近;越接近-1,表示该部分图像与该卷积核想提取的反向特征越接近;越接近0,表示该部分图像与卷积核想提取的特征没什么关系。卷积核扫描一遍之后,得到一个图像矩阵,该矩阵中的数就可以看出卷积核想提取特征所在的位置。该图像矩阵称为feature map特征映射。

问题:
全连接层用作分类,那为什么可以用多个全连接层

卷积神经网络(CNN)基础介绍

一文让你彻底了解卷积神经网络
深度学习 — 卷积神经网络CNN(LeNet-5网络详解)
深度学习(四)卷积神经网络入门学习(1)

经典卷积神经网络(CNN)图像分类算法详解

卷积神经网络记录(一)基础知识整理

Deep Learning

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/在线问答5/article/detail/846635
推荐阅读
相关标签
  

闽ICP备14008679号