当前位置:   article > 正文

常用的激活函数(Sigmoid、Tanh、ReLU等)_激活函数有哪些

激活函数有哪些

目录

一、激活函数定义

二、梯度消失与梯度爆炸 

1.什么是梯度消失与梯度爆炸

2.梯度消失的根本原因

3.如何解决梯度消失与梯度爆炸问题 

三、常用激活函数

1.Sigmoid

2.Tanh

3.ReLU

4.Leaky ReLU

5.ELU

6.softmax

7.Swish


一、激活函数定义

        激活函数 (Activation functions) 对于人工神经网络模型去学习、理解非常复杂和非线性的函数来说具有十分重要的作用。它们将非线性特性引入到神经网络中。在下图中,输入的 inputs 通过加权,求和后,还被作用了一个函数f,这个函数f就是激活函数。引入激活函数是为了增加神经网络模型的非线性。没有激活函数的每层都相当于矩阵相乘。就算你叠加了若干层之后,无非还是个矩阵相乘罢了。

为什么使用激活函数?

        如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层节点的输入都是上层输出的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机(Perceptron)了,那么网络的逼近能力就相当有限。正因为上面的原因,我们决定引入非线性函数作为激励函数,这样深层神经网络表达能力就更加强大(不再是输入的线性组合,而是几乎可以逼近任意函数)。

激活函数有哪些性

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/在线问答5/article/detail/853334
推荐阅读
相关标签
  

闽ICP备14008679号