赞
踩
Darknet是一个轻型的深度学习和训练框架,从这一点上,它和tensorflow以及pytorch这种没有什么不同,特点在轻型二字,它主要对卷集神经网络进行了底层实现,并且主要用于YOLO的目标检测,特点主要有:
下面开始实验。
下载代码,编译
- git clone https://github.com/AlexeyAB/darknet
- cd darknet
- make
下载预训练权重:
验证:
- caozilong@caozilong-Vostro-3268:~/Workspace/yolo/darknet$ ./darknet detector test ./cfg/coco.data ./cfg/yolov4.cfg ./yolov4.weights data/dog.jpg
- GPU isn't used
- OpenCV isn't used - data augmentation will be slow
- mini_batch = 1, batch = 8, time_steps = 1, train = 0
- layer filters size/strd(dil) input output
- 0 conv 32 3 x 3/ 1 608 x 608 x 3 -> 608 x 608 x 32 0.639 BF
- 1 conv 64 3 x 3/ 2 608 x 608 x 32 -> 304 x 304 x 64 3.407 BF
- 2 conv 64 1 x 1/ 1 304 x 304 x 64 -> 304 x 304 x 64 0.757 BF
- 3 route 1 -> 304 x 304 x 64
- 4 conv 64 1 x 1/ 1 304 x 304 x 64 -> 304 x 304 x 64 0.757 BF
- 5 conv 32 1 x 1/ 1 304 x 304 x 64 -> 304 x 304 x 32 0.379 BF
- 6 conv 64 3 x 3/ 1 304 x 304 x 32 -> 304 x 304 x 64 3.407 BF
- 7 Shortcut Layer: 4, wt = 0, wn = 0, outputs: 304 x 304 x 64 0.006 BF
- 8 conv 64 1 x 1/ 1 304 x 304 x 64 -> 304 x 304 x 64 0.757 BF
- 9 route 8 2 -> 304 x 304 x 128
- 10 conv 64 1 x 1/ 1 304 x 304 x 128 -> 304 x 304 x 64 1.514 BF
- 11 conv 128 3 x 3/ 2 304 x 304 x 64 -> 152 x 152 x 128 3.407 BF
- 12 conv 64 1 x 1/ 1 152 x 152 x 128 -> 152 x 152 x 64 0.379 BF
- 13 route 11 -> 152 x 152 x 128
- 14 conv 64 1 x 1/ 1 152 x 152 x 128 -> 152 x 152 x 64 0.379 BF
- 15 conv 64 1 x 1/ 1 152 x 152 x 64 -> 152 x 152 x 64 0.189 BF
- 16 conv 64 3 x 3/ 1 152 x 152 x 64 -> 152 x 152 x 64 1.703 BF
- 17 Shortcut Layer: 14, wt = 0, wn = 0, outputs: 152 x 152 x 64 0.001 BF
- 18 conv 64 1 x 1/ 1 152 x 152 x 64 -> 152 x 152 x 64 0.189 BF
- 19 conv 64 3 x 3/ 1 152 x 152 x 64 -> 152 x 152 x 64 1.703 BF
- 20 Shortcut Layer: 17, wt = 0, wn = 0, outputs: 152 x 152 x 64 0.001 BF
- 21 conv 64 1 x 1/ 1 152 x 152 x 64 -> 152 x 152 x 64 0.189 BF
- 22 route 21 12 -> 152 x 152 x 128
- 23 conv 128 1 x 1/ 1 152 x 152 x 128 -> 152 x 152 x 128 0.757 BF
- 24 conv 256 3 x 3/ 2 152 x 152 x 128 -> 76 x 76 x 256 3.407 BF
- 25 conv 128 1 x 1/ 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BF
- 26 route 24 -> 76 x 76 x 256
- 27 conv 128 1 x 1/ 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BF
- 28 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF
- 29 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF
- 30 Shortcut Layer: 27, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF
- 31 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF
- 32 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF
- 33 Shortcut Layer: 30, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF
- 34 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF
- 35 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF
- 36 Shortcut Layer: 33, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF
- 37 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF
- 38 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF
- 39 Shortcut Layer: 36, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF
- 40 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF
- 41 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF
- 42 Shortcut Layer: 39, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF
- 43 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF
- 44 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF
- 45 Shortcut Layer: 42,
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。