当前位置:   article > 正文

Ubuntu18.04 搭建YOLOV4环境_ubuntu18 yolov4编译

ubuntu18 yolov4编译

Darknet是一个轻型的深度学习和训练框架,从这一点上,它和tensorflow以及pytorch这种没有什么不同,特点在轻型二字,它主要对卷集神经网络进行了底层实现,并且主要用于YOLO的目标检测,特点主要有:

  1. C语言实现
  2. 没有依赖项,除了opencv进行视频和UVC摄像头处理
  3. 容易安装,可移植性好
  4. 支持CPU于GPU(CUDA)两种计算方式

下面开始实验。

下载代码,编译

  1. git clone https://github.com/AlexeyAB/darknet
  2. cd darknet
  3. make

 下载预训练权重:

 验证:

  1. caozilong@caozilong-Vostro-3268:~/Workspace/yolo/darknet$ ./darknet detector test ./cfg/coco.data ./cfg/yolov4.cfg ./yolov4.weights data/dog.jpg
  2. GPU isn't used
  3. OpenCV isn't used - data augmentation will be slow
  4. mini_batch = 1, batch = 8, time_steps = 1, train = 0
  5. layer filters size/strd(dil) input output
  6. 0 conv 32 3 x 3/ 1 608 x 608 x 3 -> 608 x 608 x 32 0.639 BF
  7. 1 conv 64 3 x 3/ 2 608 x 608 x 32 -> 304 x 304 x 64 3.407 BF
  8. 2 conv 64 1 x 1/ 1 304 x 304 x 64 -> 304 x 304 x 64 0.757 BF
  9. 3 route 1 -> 304 x 304 x 64
  10. 4 conv 64 1 x 1/ 1 304 x 304 x 64 -> 304 x 304 x 64 0.757 BF
  11. 5 conv 32 1 x 1/ 1 304 x 304 x 64 -> 304 x 304 x 32 0.379 BF
  12. 6 conv 64 3 x 3/ 1 304 x 304 x 32 -> 304 x 304 x 64 3.407 BF
  13. 7 Shortcut Layer: 4, wt = 0, wn = 0, outputs: 304 x 304 x 64 0.006 BF
  14. 8 conv 64 1 x 1/ 1 304 x 304 x 64 -> 304 x 304 x 64 0.757 BF
  15. 9 route 8 2 -> 304 x 304 x 128
  16. 10 conv 64 1 x 1/ 1 304 x 304 x 128 -> 304 x 304 x 64 1.514 BF
  17. 11 conv 128 3 x 3/ 2 304 x 304 x 64 -> 152 x 152 x 128 3.407 BF
  18. 12 conv 64 1 x 1/ 1 152 x 152 x 128 -> 152 x 152 x 64 0.379 BF
  19. 13 route 11 -> 152 x 152 x 128
  20. 14 conv 64 1 x 1/ 1 152 x 152 x 128 -> 152 x 152 x 64 0.379 BF
  21. 15 conv 64 1 x 1/ 1 152 x 152 x 64 -> 152 x 152 x 64 0.189 BF
  22. 16 conv 64 3 x 3/ 1 152 x 152 x 64 -> 152 x 152 x 64 1.703 BF
  23. 17 Shortcut Layer: 14, wt = 0, wn = 0, outputs: 152 x 152 x 64 0.001 BF
  24. 18 conv 64 1 x 1/ 1 152 x 152 x 64 -> 152 x 152 x 64 0.189 BF
  25. 19 conv 64 3 x 3/ 1 152 x 152 x 64 -> 152 x 152 x 64 1.703 BF
  26. 20 Shortcut Layer: 17, wt = 0, wn = 0, outputs: 152 x 152 x 64 0.001 BF
  27. 21 conv 64 1 x 1/ 1 152 x 152 x 64 -> 152 x 152 x 64 0.189 BF
  28. 22 route 21 12 -> 152 x 152 x 128
  29. 23 conv 128 1 x 1/ 1 152 x 152 x 128 -> 152 x 152 x 128 0.757 BF
  30. 24 conv 256 3 x 3/ 2 152 x 152 x 128 -> 76 x 76 x 256 3.407 BF
  31. 25 conv 128 1 x 1/ 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BF
  32. 26 route 24 -> 76 x 76 x 256
  33. 27 conv 128 1 x 1/ 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BF
  34. 28 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF
  35. 29 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF
  36. 30 Shortcut Layer: 27, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF
  37. 31 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF
  38. 32 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF
  39. 33 Shortcut Layer: 30, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF
  40. 34 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF
  41. 35 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF
  42. 36 Shortcut Layer: 33, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF
  43. 37 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF
  44. 38 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF
  45. 39 Shortcut Layer: 36, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF
  46. 40 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF
  47. 41 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF
  48. 42 Shortcut Layer: 39, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF
  49. 43 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF
  50. 44 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF
  51. 45 Shortcut Layer: 42,
声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop】
推荐阅读
相关标签
  

闽ICP备14008679号