赞
踩
给你一个整数数组 nums
,找到其中最长严格递增子序列的长度。
子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7]
是数组 [0,3,1,6,2,2,7]
的子序列。
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
dp[i]
是以nums[i]
为结尾的递增子序列。dp[i] = Math.max(dp[i], dp[j] + 1);
。可能nums[i-1]
是比前后两个都大的,那么该数字不在子序列中。如果最后的数字比前一个大,那么以最后一个数字构成的子序列长度是不如前一个的。class Solution {
public int lengthOfLIS(int[] nums) {
int len = nums.length;
int[] dp = new int[len];
Arrays.fill(dp, 1);
for (int i = 1; i < len; i++) {
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
}
int res = 0;
for (int i = 0; i < dp.length; i++) {
res = Math.max(res, dp[i]);
}
return res;
}
}
给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。
连续递增的子序列 可以由两个下标 l
和 r
(l < r
)确定,如果对于每个 l <= i < r
,都有 nums[i] < nums[i + 1]
,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]]
就是连续递增子序列。
输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。
class Solution {
public int findLengthOfLCIS(int[] nums) {
int len = nums.length;
int[] dp = new int[len];
Arrays.fill(dp, 1);
for (int i = 1; i < len; i++) {
if (nums[i] > nums[i - 1]) {
dp[i] = dp[i - 1] + 1;
}
}
int res = 0;
for (int i = 0; i < dp.length; i++) {
res = Math.max(res, dp[i]);
}
return res;
}
}
给两个整数数组 nums1
和 nums2
,返回 两个数组中 公共的 、长度最长的子数组的长度 。
输入:nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7]
输出:3
解释:长度最长的公共子数组是 [3,2,1] 。
dp[len1+1][len2+1]
。class Solution {
public int findLength(int[] nums1, int[] nums2) {
int len1 = nums1.length;
int len2 = nums2.length;
int[][] dp = new int[len1][len2];
int max = 0;
for (int i = 0; i < nums1.length; i++) {
for (int j = 0; j < nums2.length; j++) {
if (i == 0 || j == 0) {
if (nums1[i] == nums2[j]) {
dp[i][j] = 1;
}
} else if (nums1[i] == nums2[j]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
}
if (dp[i][j] > max) {
max = dp[i][j];
}
}
}
return max;
}
}
给定两个字符串 text1
和 text2
,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0
。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
"ace"
是 "abcde"
的子序列,但 "aec"
不是 "abcde"
的子序列。两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。
输入:text1 = "abcde", text2 = "ace"
输出:3
解释:最长公共子序列是 "ace" ,它的长度为 3 。
dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]
dp[i][j] = dp[i - 1][j - 1] + 1;
;如果当前字符不同, dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);
。class Solution {
public int longestCommonSubsequence(String text1, String text2) {
int len1 = text1.length();
int len2 = text2.length();
int[][] dp = new int[len1 + 1][len2 + 1];
for (int i = 1; i <= len1; i++) {
char char1 = text1.charAt(i - 1);
for (int j = 1; j <= len2; j++) {
char char2 = text2.charAt(j - 1);
if (char1 == char2) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);
}
}
}
return dp[len1][len2];
}
}
在两条独立的水平线上按给定的顺序写下 nums1
和 nums2
中的整数。
现在,可以绘制一些连接两个数字 nums1[i]
和 nums2[j]
的直线,这些直线需要同时满足满足:
nums1[i] == nums2[j]
请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。
以这种方法绘制线条,并返回可以绘制的最大连线数。
输入:nums1 = [1,4,2], nums2 = [1,2,4]
输出:2
解释:可以画出两条不交叉的线,如上图所示。
但无法画出第三条不相交的直线,因为从 nums1[1]=4 到 nums2[2]=4 的直线将与从 nums1[2]=2 到 nums2[1]=2 的直线相交。
class Solution {
public int maxUncrossedLines(int[] nums1, int[] nums2) {
int len1 = nums1.length;
int len2 = nums2.length;
int[][] dp = new int[len1 + 1][len2 + 1];
for (int i = 1; i <= len1; i++) {
int num1 = nums1[i - 1];
for (int j = 1; j <= len2; j++) {
int num2 = nums2[j - 1];
if (num1 == num2) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);
}
}
System.out.println(Arrays.toString(dp[i]));
}
return dp[len1][len2];
}
}
给你一个整数数组 nums
,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组 是数组中的一个连续部分。
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
dp[i]
:以i为结尾的最大连续子序列和dp[i] = Math.max(dp[i - 1] + nums[i], nums[i]);
。根据前一个dp,判断是否大于0。class Solution_LC53 {
public int maxSubArray(int[] nums) {
int len = nums.length;
int[] dp = new int[len];
dp[0] = nums[0];
int res = nums[0];
for (int i = 1; i < len; i++) {
dp[i] = Math.max(dp[i - 1] + nums[i], nums[i]);
res = Math.max(res, dp[i]);
}
return res;
}
}
给定字符串 s 和 t ,判断 s 是否为 t 的子序列。
字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"
是"abcde"
的一个子序列,而"aec"
不是)。
进阶:
如果有大量输入的 S,称作 S1, S2, … , Sk 其中 k >= 10亿,你需要依次检查它们是否为 T 的子序列。在这种情况下,你会怎样改变代码?
输入:s = "abc", t = "ahbgdc"
输出:true
dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。
dp[i][j] = dp[i][j-1];
class Solution_LC392 {
public boolean isSubsequence(String s, String t) {
int len1 = s.length();
int len2 = t.length();
int[][] dp = new int[len1 + 1][len2 + 1];
for (int i = 1; i <= len1; i++) {
char char1 = s.charAt(i - 1);
for (int j = 1; j <= len2; j++) {
char char2 = t.charAt(j - 1);
if (char1 == char2) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = dp[i][j-1];
}
}
}
return s.length() == dp[len1][len2];
}
}
给你两个字符串 s
和 t
,统计并返回在 s
的 子序列 中 t
出现的个数。
题目数据保证答案符合 32 位带符号整数范围。
输入:s = "rabbbit", t = "rabbit"
输出:3
解释:
如下所示, 有 3 种可以从 s 中得到 "rabbit" 的方案。
rabbbit
rabbbit
rabbbit
dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
;当字符不相等时, dp[i][j] = dp[i - 1][j];
。dp[i][0] 表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。
public int numDistinct(String s, String t) {
int len1 = s.length();
int len2 = t.length();
int[][] dp = new int[len1 + 1][len2 + 1];
for (int i = 0; i <=len1; i++) {
dp[i][0] = 1;
}
for (int i = 1; i <= len1; i++) {
char char1 = s.charAt(i - 1);
for (int j = 1; j <= len2; j++) {
char char2 = t.charAt(j - 1);
if (char1 == char2) {
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
return dp[len1][len2];
}
给定两个单词 word1
和 word2
,返回使得 word1
和 word2
相同所需的最小步数。
每步 可以删除任意一个字符串中的一个字符。
输入: word1 = "sea", word2 = "eat"
输出: 2
解释: 第一步将 "sea" 变为 "ea" ,第二步将 "eat "变为 "ea"
dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。
public int minDistance(String word1, String word2) {
int len1 = word1.length();
int len2 = word2.length();
int[][] dp = new int[len1 + 1][len2 + 1];
for (int i = 0; i <= len1; i++) dp[i][0] = i;
for (int j = 0; j <= len2; j++) dp[0][j] = j;
for (int i = 1; i <= len1; i++) {
char char1 = word1.charAt(i - 1);
for (int j = 1; j <= len2; j++) {
char char2 = word2.charAt(j - 1);
if (char1 == char2) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + 1;
}
}
}
return dp[len1][len2];
}
给你两个单词 word1
和 word2
, 请返回将 word1
转换成 word2
所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。
dp[i][j] = dp[i - 1][j - 1];
;如果字符串不等,min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
class Solution_LC72 {
public int minDistance(String word1, String word2) {
int len1 = word1.length();
int len2 = word2.length();
int[][] dp = new int[len1 + 1][len2 + 1];
for (int i = 0; i <= len1; i++) dp[i][0] = i;
for (int j = 0; j <= len2; j++) dp[0][j] = j;
for (int i = 1; i <= len1; i++) {
char char1 = word1.charAt(i - 1);
for (int j = 1; j <= len2; j++) {
char char2 = word2.charAt(j - 1);
if (char1 == char2) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = Math.min(dp[i - 1][j - 1], Math.min(dp[i][j - 1], dp[i - 1][j])) + 1;
}
}
}
return dp[len1][len2];
}
}
给你一个字符串 s
,请你统计并返回这个字符串中 回文子串 的数目。
回文字符串 是正着读和倒过来读一样的字符串。
子字符串 是字符串中的由连续字符组成的一个序列。
具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。
输入:s = "abc"
输出:3
解释:三个回文子串: "a", "b", "c"
dp[i + 1][j - 1]
,所以遍历顺序是由下面往上面遍历,左边往右边遍历。即i从len-1遍历,j从i遍历到len-1dp[i + 1][j - 1]
是回文的,dp[i][j]
也是回文的。class Solution {
public int countSubstrings(String s) {
int len = s.length();
//表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。
boolean[][] dp = new boolean[len][len];
int res = 0;
for (int i = len - 1; i >= 0; i--) {
for (int j = i; j < len; j++) {
if (s.charAt(i) == s.charAt(j)) {
if (j - i <= 1) {
dp[i][j] = true;
res++;
} else if(dp[i + 1][j - 1]){
dp[i][j] = true;
res++;
}
}
}
}
return res;
}
}
给你一个字符串 s
,找出其中最长的回文子序列,并返回该序列的长度。
子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。
输入:s = "bbbab"
输出:4
解释:一个可能的最长回文子序列为 "bbbb"
(dp[i + 1][j]
和dp[i][j - 1])
哪一个是回文。class Solution {
public int longestPalindromeSubseq(String s) {
int len = s.length();
int[][] dp = new int[len][len];
for (int i = len - 1; i >= 0; i--) {
dp[i][i] = 1;
char char1 = s.charAt(i);
for (int j = i + 1; j < len; j++) {
char char2 = s.charAt(j);
if (char1 == char2) {
dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
return dp[0][len - 1];
}
public static void main(String[] args) {
int res = new Solution().longestPalindromeSubseq("bbbab");
System.out.println(res);
}
}
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。