赞
踩
Transformer是一种基于注意力机制(Attention Mechanism)的神经网络架构,由Vaswani等人在2017年提出。与传统的循环神经网络(RNN)和卷积神经网络(CNN)不同,Transformer完全摒弃了循环和卷积结构,依赖于自注意力机制和并行化的处理方式,极大地提高了模型的训练效率和效果。
Transformer的主要作用是解决序列到序列(seq2seq)任务,如机器翻译、文本摘要、文本生成等。由于其强大的建模能力,Transformer已经成为许多自然语言处理(NLP)任务的基础模型。
Transformer的架构主要由两个部分组成:编码器(Encoder)和解码器(Decoder),每一部分又由多个层(Layers)组成。每一层包括以下几个关键模块:
自注意力机制(Self-Attention Mechanism): 自注意力机制通过计算输入序列中每个位置与其他所有位置之间的相似度,来决定该位置应该关注哪些信息。计算自注意力时,输入序列会被映射为Query(查询)、Key(键)和Value(值)三个向量,然后通过点积计算出注意力分数,最后通过加权求和得到注意力输出。
多头注意力机制(Multi-Head Attention): Transformer使用多个不同的注意力头来捕捉不同的语义信息,这些头的输出结果被串联后通过线性变换得到最终的注意力输出。
前馈神经网络(Feed-Forward Neural Network, FFN): 在注意力层之后,Transformer还包括一个逐位置的前馈网络,每个位置的输入都通过相同的前馈网络进行处理。
位置编码(Position Encoding): 由于Transformer架构中没有RNN的顺序处理能力,因此需要为每个输入位置加入位置编码,以保留序列的顺序信息。
层归一化(Layer Normalization)和残差连接(Residual Connection): 这些技术用于稳定训练过程,避免梯度消失和爆炸问题。
BERT(Bidirectional Encoder Representations from Transformers)是由Google在2018年提出的一种预训练语言模型。BERT的核心思想是通过在大规模语料上进行双向训练,学习深层的上下文表示。BERT只采用了Transformer架构中的编码器部分。
BERT的作用是生成上下文相关的词向量表示,它可以通过微调(Fine-tuning)来适应各种NLP任务,如问答、文本分类、情感分析等。BERT通过预训练和微调的两阶段训练模式,为许多NLP任务提供了强大的预训练模型。
BERT的原理基于以下两个预训练任务:
掩码语言模型(Masked Language Model, MLM): 在训练过程中,BERT会随机掩盖输入序列中的部分词语(通常是15%),并要求模型预测这些被掩盖的词语。这个任务迫使模型理解上下文信息,从而学到双向的词表示。
下一句预测(Next Sentence Prediction, NSP): BERT还通过一个二分类任务来训练句子间关系的表示。具体来说,BERT给定一对句子,预测第二句是否是第一句的真实后续句子。这一任务帮助模型理解句子之间的关系,对于问答等任务非常有用。
架构:
训练方式:
输入输出:
应用领域:
预训练任务:
总结来说,Transformer是一个通用的神经网络架构,适用于各种序列处理任务,而BERT则是在Transformer编码器基础上,通过预训练提升其语言理解能力,广泛应用于NLP的各种下游任务。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。